.\" $OpenBSD: carp.4,v 1.42 2022/03/31 17:27:20 naddy Exp $ .\" .\" Copyright (c) 2003, Ryan McBride. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .Dd $Mdocdate: March 31 2022 $ .Dt CARP 4 .Os .Sh NAME .Nm carp .Nd Common Address Redundancy Protocol .Sh SYNOPSIS .Cd "pseudo-device carp" .Sh DESCRIPTION The .Nm interface is a pseudo-device which implements and controls the CARP protocol. .Nm allows multiple hosts on the same local network to share a set of IP addresses. Its primary purpose is to ensure that these addresses are always available, but in some configurations .Nm can also provide load balancing functionality. .Pp A .Nm interface can be created at runtime using the .Ic ifconfig carp Ns Ar N Ic create command or by setting up a .Xr hostname.if 5 configuration file for .Xr netstart 8 . .Pp To use .Nm , the administrator needs to configure at minimum a common virtual host ID (VHID) and virtual host IP address on each machine which is to take part in the virtual group. Additional parameters can also be set on a per-interface basis: .Cm advbase and .Cm advskew , which are used to control how frequently the host sends advertisements when it is the master for a virtual host, and .Cm pass which is used to authenticate carp advertisements. Finally .Cm carpdev is used to specify which interface the .Nm device attaches to. These configurations can be done using .Xr ifconfig 8 , or through the .Dv SIOCSVH ioctl. .Pp .Nm can also be used in conjunction with .Xr ifstated 8 to respond to changes in CARP state; however, for most uses this will not be necessary. See the manual page for .Xr ifstated 8 for more information. .Pp Additionally, there are a number of global parameters which can be set using .Xr sysctl 8 : .Bl -tag -width xxxxxxxxxxxxxxxxxxxxxxxxxx .It net.inet.carp.allow Accept incoming .Nm packets. Enabled by default. .It net.inet.carp.preempt Allow virtual hosts to preempt each other. Disabled by default. .It net.inet.carp.log Make .Nm log state changes, bad packets, and other errors. May be a value between 0 and 7 corresponding with .Xr syslog 3 priorities. The default value is 2, which limits logging to changes in CARP state. .El .Sh LOAD BALANCING .Nm uses IP balancing to load balance incoming traffic over a group of .Nm hosts. IP balancing is not dependent on ARP and therefore works for traffic that comes over a router. However it requires the traffic that is destined towards the load balanced IP addresses to be received by all .Nm hosts. While this is always the case when connected to a hub, it has to play some tricks in switched networks, which will result in a higher network load. .Pp To configure load balancing one has to specify multiple carp nodes using the .Cm carpnodes option. Each node in a load balancing cluster is represented by at least one .Qq Cm vhid : Ns Cm advskew pair in a comma separated list. .Nm tries to distribute the incoming network load over all configured carpnodes. The following example creates a load balancing group consisting of three nodes, using vhids 3, 4 and 6: .Bd -literal -offset indent # ifconfig carp0 carpnodes 3:0,4:0,6:100 .Ed .Pp The advskew value of the last node is set to 100, so that this node is designated to the BACKUP state. It will only become MASTER if all nodes with a lower advskew value have failed. By varying this value throughout the machines in the cluster it is possible to decide which share of the network load each node receives. Therefore, all carp interfaces in the cluster are configured identically, except for a different .Cm advskew value within the carpnodes specification. .Pp IP balancing works by utilizing the network itself to distribute incoming traffic to all .Nm nodes in the cluster. Each packet is filtered on the incoming .Nm interface so that only one node in the cluster accepts the packet. All the other nodes will just silently drop it. The filtering function uses a hash over the source and destination address of the IPv4 or IPv6 packet and compares the result against the state of the carpnode. .Pp IP balancing is activated by setting the balancing mode to .Cm ip . This is the recommended default setting. In this mode, carp uses a multicast MAC address, so that a switch sends incoming traffic towards all nodes. .Pp However, there are a few OS and routers that do not accept a multicast MAC address being mapped to a unicast IP. This can be resolved by using one of the following unicast options. For scenarios where a hub is used it is not necessary to use a multicast MAC and it is safe to use the .Cm ip-unicast mode. Manageable switches can usually be tricked into forwarding unicast traffic to all cluster nodes ports by configuring them into some sort of monitoring mode. If this is not possible, using the .Cm ip-stealth mode is another option, which should work on most switches. In this mode .Nm never sends packets with its virtual MAC address as source. Stealth mode prevents a switch from learning the virtual MAC address, so that it has to flood the traffic to all its ports. Activating stealth mode on a .Nm interface that has already been running might not work instantly. As a workaround the VHID of the first carpnode can be changed to a previously unused one, or just wait until the MAC table entry in the switch times out. Some layer 3 switches do port learning based on ARP packets. Therefore the stealth mode cannot hide the virtual MAC address from these kind of devices. .Pp If IP balancing is being used on a firewall, it is recommended to configure the .Cm carpnodes in a symmetrical manner. This is achieved by simply using the same .Cm carpnodes list on all sides of the firewall. This ensures that packets of one connection will pass in and out on the same host and are not routed asymmetrically. .Sh EXAMPLES For most scenarios it is desirable to have a well-defined master, achieved by enabling the .Cm preempt option. Enable it on both host A and B: .Pp .Dl # sysctl net.inet.carp.preempt=1 .Pp Assume that host A is the preferred master and carp should run on the physical interfaces em0 with the network 192.168.1.0/24 and em1 with network 192.168.2.0/24. This is the setup for host A: .Bd -literal -offset indent # ifconfig carp0 192.168.1.1/24 carpdev em0 vhid 1 # ifconfig carp1 192.168.2.1/24 carpdev em1 vhid 2 .Ed .Pp The setup for host B is identical, but it has a higher .Cm advskew : .Bd -literal -offset indent # ifconfig carp0 192.168.1.1/24 carpdev em0 vhid 1 advskew 100 # ifconfig carp1 192.168.2.1/24 carpdev em1 vhid 2 advskew 100 .Ed .Ss LOAD BALANCING In order to set up a load balanced virtual host, it is necessary to configure one .Cm carpnodes entry for each physical host. In the following example, two physical hosts are configured to provide balancing and failover for the IP address 192.168.1.10. .Pp First the .Nm interface on Host A is configured. The .Cm advskew of 100 on the second carpnode entry means that its advertisements will be sent out slightly less frequently and will therefore become the designated backup. .Bd -literal -offset indent # ifconfig carp0 192.168.1.10 carpdev em0 carpnodes 1:0,2:100 \e balancing ip .Ed .Pp The configuration for host B is identical, except the skew is on the carpnode entry with virtual host 1 rather than virtual host 2. .Bd -literal -offset indent # ifconfig carp0 192.168.1.10 carpdev em0 carpnodes 1:100,2:0 \e balancing ip .Ed .Pp If a different mode of load balancing is desired, the .Cm balancing mode can be adjusted accordingly. .Sh SEE ALSO .Xr sysctl 2 , .Xr inet 4 , .Xr pfsync 4 , .Xr hostname.if 5 , .Xr ifconfig 8 , .Xr ifstated 8 , .Xr netstart 8 , .Xr sysctl 8 .Sh HISTORY The .Nm device first appeared in .Ox 3.5 . .Sh BUGS If load balancing is used in setups where the carpdev does not share an IP in the same subnet as .Nm , it is not possible to use the IP of the .Nm interface for self originated traffic. This is because the return packets are also subject to load balancing and might end up on any other node in the cluster. .Pp If an IPv6 load balanced carp interface is taken down manually, it will accept all incoming packets for its address. This will lead to duplicated packets.