/* $OpenBSD: ar5008.c,v 1.71 2022/12/27 20:13:03 patrick Exp $ */ /*- * Copyright (c) 2009 Damien Bergamini * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. * Routines common to AR5008, AR9001 and AR9002 families. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include /* uintptr_t */ #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include int ar5008_attach(struct athn_softc *); int ar5008_read_eep_word(struct athn_softc *, uint32_t, uint16_t *); int ar5008_read_rom(struct athn_softc *); void ar5008_swap_rom(struct athn_softc *); int ar5008_gpio_read(struct athn_softc *, int); void ar5008_gpio_write(struct athn_softc *, int, int); void ar5008_gpio_config_input(struct athn_softc *, int); void ar5008_gpio_config_output(struct athn_softc *, int, int); void ar5008_rfsilent_init(struct athn_softc *); int ar5008_dma_alloc(struct athn_softc *); void ar5008_dma_free(struct athn_softc *); int ar5008_tx_alloc(struct athn_softc *); void ar5008_tx_free(struct athn_softc *); int ar5008_rx_alloc(struct athn_softc *); void ar5008_rx_free(struct athn_softc *); void ar5008_rx_enable(struct athn_softc *); void ar5008_rx_radiotap(struct athn_softc *, struct mbuf *, struct ar_rx_desc *); int ar5008_ccmp_decap(struct athn_softc *, struct mbuf *, struct ieee80211_node *); void ar5008_rx_intr(struct athn_softc *); int ar5008_tx_process(struct athn_softc *, int); void ar5008_tx_intr(struct athn_softc *); int ar5008_swba_intr(struct athn_softc *); int ar5008_intr(struct athn_softc *); int ar5008_ccmp_encap(struct mbuf *, u_int, struct ieee80211_key *); int ar5008_tx(struct athn_softc *, struct mbuf *, struct ieee80211_node *, int); void ar5008_set_rf_mode(struct athn_softc *, struct ieee80211_channel *); int ar5008_rf_bus_request(struct athn_softc *); void ar5008_rf_bus_release(struct athn_softc *); void ar5008_set_phy(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar5008_set_delta_slope(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); void ar5008_enable_antenna_diversity(struct athn_softc *); void ar5008_init_baseband(struct athn_softc *); void ar5008_disable_phy(struct athn_softc *); void ar5008_init_chains(struct athn_softc *); void ar5008_set_rxchains(struct athn_softc *); void ar5008_read_noisefloor(struct athn_softc *, int16_t *, int16_t *); void ar5008_write_noisefloor(struct athn_softc *, int16_t *, int16_t *); int ar5008_get_noisefloor(struct athn_softc *); void ar5008_apply_noisefloor(struct athn_softc *); void ar5008_bb_load_noisefloor(struct athn_softc *); void ar5008_do_noisefloor_calib(struct athn_softc *); void ar5008_init_noisefloor_calib(struct athn_softc *); void ar5008_do_calib(struct athn_softc *); void ar5008_next_calib(struct athn_softc *); void ar5008_calib_iq(struct athn_softc *); void ar5008_calib_adc_gain(struct athn_softc *); void ar5008_calib_adc_dc_off(struct athn_softc *); void ar5008_write_txpower(struct athn_softc *, int16_t *); void ar5008_set_viterbi_mask(struct athn_softc *, int); void ar5008_hw_init(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); uint8_t ar5008_get_vpd(uint8_t, const uint8_t *, const uint8_t *, int); void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *, struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *); void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t *); void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *, uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t *); void ar5008_set_noise_immunity_level(struct athn_softc *, int); void ar5008_enable_ofdm_weak_signal(struct athn_softc *); void ar5008_disable_ofdm_weak_signal(struct athn_softc *); void ar5008_set_cck_weak_signal(struct athn_softc *, int); void ar5008_set_firstep_level(struct athn_softc *, int); void ar5008_set_spur_immunity_level(struct athn_softc *, int); /* Extern functions. */ void athn_stop(struct ifnet *, int); int athn_interpolate(int, int, int, int, int); int athn_txtime(struct athn_softc *, int, int, u_int); void athn_inc_tx_trigger_level(struct athn_softc *); int athn_tx_pending(struct athn_softc *, int); void athn_stop_tx_dma(struct athn_softc *, int); void athn_get_delta_slope(uint32_t, uint32_t *, uint32_t *); void athn_config_pcie(struct athn_softc *); void athn_config_nonpcie(struct athn_softc *); uint8_t athn_chan2fbin(struct ieee80211_channel *); uint8_t ar5416_get_rf_rev(struct athn_softc *); void ar5416_reset_addac(struct athn_softc *, struct ieee80211_channel *); void ar5416_rf_reset(struct athn_softc *, struct ieee80211_channel *); void ar5416_reset_bb_gain(struct athn_softc *, struct ieee80211_channel *); void ar9280_reset_rx_gain(struct athn_softc *, struct ieee80211_channel *); void ar9280_reset_tx_gain(struct athn_softc *, struct ieee80211_channel *); int ar5008_attach(struct athn_softc *sc) { struct athn_ops *ops = &sc->ops; struct ieee80211com *ic = &sc->sc_ic; struct ar_base_eep_header *base; uint8_t eep_ver, kc_entries_log; int error; /* Set callbacks for AR5008, AR9001 and AR9002 families. */ ops->gpio_read = ar5008_gpio_read; ops->gpio_write = ar5008_gpio_write; ops->gpio_config_input = ar5008_gpio_config_input; ops->gpio_config_output = ar5008_gpio_config_output; ops->rfsilent_init = ar5008_rfsilent_init; ops->dma_alloc = ar5008_dma_alloc; ops->dma_free = ar5008_dma_free; ops->rx_enable = ar5008_rx_enable; ops->intr = ar5008_intr; ops->tx = ar5008_tx; ops->set_rf_mode = ar5008_set_rf_mode; ops->rf_bus_request = ar5008_rf_bus_request; ops->rf_bus_release = ar5008_rf_bus_release; ops->set_phy = ar5008_set_phy; ops->set_delta_slope = ar5008_set_delta_slope; ops->enable_antenna_diversity = ar5008_enable_antenna_diversity; ops->init_baseband = ar5008_init_baseband; ops->disable_phy = ar5008_disable_phy; ops->set_rxchains = ar5008_set_rxchains; ops->noisefloor_calib = ar5008_do_noisefloor_calib; ops->init_noisefloor_calib = ar5008_init_noisefloor_calib; ops->get_noisefloor = ar5008_get_noisefloor; ops->apply_noisefloor = ar5008_apply_noisefloor; ops->do_calib = ar5008_do_calib; ops->next_calib = ar5008_next_calib; ops->hw_init = ar5008_hw_init; ops->set_noise_immunity_level = ar5008_set_noise_immunity_level; ops->enable_ofdm_weak_signal = ar5008_enable_ofdm_weak_signal; ops->disable_ofdm_weak_signal = ar5008_disable_ofdm_weak_signal; ops->set_cck_weak_signal = ar5008_set_cck_weak_signal; ops->set_firstep_level = ar5008_set_firstep_level; ops->set_spur_immunity_level = ar5008_set_spur_immunity_level; /* Set MAC registers offsets. */ sc->obs_off = AR_OBS; sc->gpio_input_en_off = AR_GPIO_INPUT_EN_VAL; if (!(sc->flags & ATHN_FLAG_PCIE)) athn_config_nonpcie(sc); else athn_config_pcie(sc); /* Read entire ROM content in memory. */ if ((error = ar5008_read_rom(sc)) != 0) { printf("%s: could not read ROM\n", sc->sc_dev.dv_xname); return (error); } /* Get RF revision. */ sc->rf_rev = ar5416_get_rf_rev(sc); base = sc->eep; eep_ver = (base->version >> 12) & 0xf; sc->eep_rev = (base->version & 0xfff); if (eep_ver != AR_EEP_VER || sc->eep_rev == 0) { printf("%s: unsupported ROM version %d.%d\n", sc->sc_dev.dv_xname, eep_ver, sc->eep_rev); return (EINVAL); } if (base->opCapFlags & AR_OPFLAGS_11A) { sc->flags |= ATHN_FLAG_11A; if ((base->opCapFlags & AR_OPFLAGS_11N_5G20) == 0) sc->flags |= ATHN_FLAG_11N; #ifdef notyet if ((base->opCapFlags & AR_OPFLAGS_11N_5G40) == 0) sc->flags |= ATHN_FLAG_11N; #endif } if (base->opCapFlags & AR_OPFLAGS_11G) { sc->flags |= ATHN_FLAG_11G; if ((base->opCapFlags & AR_OPFLAGS_11N_2G20) == 0) sc->flags |= ATHN_FLAG_11N; #ifdef notyet if ((base->opCapFlags & AR_OPFLAGS_11N_2G40) == 0) sc->flags |= ATHN_FLAG_11N; #endif } IEEE80211_ADDR_COPY(ic->ic_myaddr, base->macAddr); /* Check if we have a hardware radio switch. */ if (base->rfSilent & AR_EEP_RFSILENT_ENABLED) { sc->flags |= ATHN_FLAG_RFSILENT; /* Get GPIO pin used by hardware radio switch. */ sc->rfsilent_pin = MS(base->rfSilent, AR_EEP_RFSILENT_GPIO_SEL); /* Get polarity of hardware radio switch. */ if (base->rfSilent & AR_EEP_RFSILENT_POLARITY) sc->flags |= ATHN_FLAG_RFSILENT_REVERSED; } /* Get the number of HW key cache entries. */ kc_entries_log = MS(base->deviceCap, AR_EEP_DEVCAP_KC_ENTRIES); sc->kc_entries = (kc_entries_log != 0) ? 1 << kc_entries_log : AR_KEYTABLE_SIZE; if (sc->kc_entries > AR_KEYTABLE_SIZE) sc->kc_entries = AR_KEYTABLE_SIZE; sc->txchainmask = base->txMask; if (sc->mac_ver == AR_SREV_VERSION_5416_PCI && !(base->opCapFlags & AR_OPFLAGS_11A)) { /* For single-band AR5416 PCI, use GPIO pin 0. */ sc->rxchainmask = ar5008_gpio_read(sc, 0) ? 0x5 : 0x7; } else sc->rxchainmask = base->rxMask; ops->setup(sc); return (0); } /* * Read 16-bit word from ROM. */ int ar5008_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val) { uint32_t reg; int ntries; reg = AR_READ(sc, AR_EEPROM_OFFSET(addr)); for (ntries = 0; ntries < 1000; ntries++) { reg = AR_READ(sc, AR_EEPROM_STATUS_DATA); if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS))) { *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL); return (0); } DELAY(10); } *val = 0xffff; return (ETIMEDOUT); } int ar5008_read_rom(struct athn_softc *sc) { uint32_t addr, end; uint16_t magic, sum, *eep; int need_swap = 0; int error; /* Determine ROM endianness. */ error = ar5008_read_eep_word(sc, AR_EEPROM_MAGIC_OFFSET, &magic); if (error != 0) return (error); if (magic != AR_EEPROM_MAGIC) { if (magic != swap16(AR_EEPROM_MAGIC)) { DPRINTF(("invalid ROM magic 0x%x != 0x%x\n", magic, AR_EEPROM_MAGIC)); return (EIO); } DPRINTF(("non-native ROM endianness\n")); need_swap = 1; } /* Allocate space to store ROM in host memory. */ sc->eep = malloc(sc->eep_size, M_DEVBUF, M_NOWAIT); if (sc->eep == NULL) return (ENOMEM); /* Read entire ROM and compute checksum. */ sum = 0; eep = sc->eep; end = sc->eep_base + sc->eep_size / sizeof(uint16_t); for (addr = sc->eep_base; addr < end; addr++, eep++) { if ((error = ar5008_read_eep_word(sc, addr, eep)) != 0) { DPRINTF(("could not read ROM at 0x%x\n", addr)); return (error); } if (need_swap) *eep = swap16(*eep); sum ^= *eep; } if (sum != 0xffff) { printf("%s: bad ROM checksum 0x%04x\n", sc->sc_dev.dv_xname, sum); return (EIO); } if (need_swap) ar5008_swap_rom(sc); return (0); } void ar5008_swap_rom(struct athn_softc *sc) { struct ar_base_eep_header *base = sc->eep; /* Swap common fields first. */ base->length = swap16(base->length); base->version = swap16(base->version); base->regDmn[0] = swap16(base->regDmn[0]); base->regDmn[1] = swap16(base->regDmn[1]); base->rfSilent = swap16(base->rfSilent); base->blueToothOptions = swap16(base->blueToothOptions); base->deviceCap = swap16(base->deviceCap); /* Swap device-dependent fields. */ sc->ops.swap_rom(sc); } /* * Access to General Purpose Input/Output ports. */ int ar5008_gpio_read(struct athn_softc *sc, int pin) { KASSERT(pin < sc->ngpiopins); if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) return (!((AR_READ(sc, AR7010_GPIO_IN) >> pin) & 1)); return ((AR_READ(sc, AR_GPIO_IN_OUT) >> (sc->ngpiopins + pin)) & 1); } void ar5008_gpio_write(struct athn_softc *sc, int pin, int set) { uint32_t reg; KASSERT(pin < sc->ngpiopins); if (sc->flags & ATHN_FLAG_USB) set = !set; /* AR9271/AR7010 is reversed. */ if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { /* Special case for AR7010. */ reg = AR_READ(sc, AR7010_GPIO_OUT); if (set) reg |= 1 << pin; else reg &= ~(1 << pin); AR_WRITE(sc, AR7010_GPIO_OUT, reg); } else { reg = AR_READ(sc, AR_GPIO_IN_OUT); if (set) reg |= 1 << pin; else reg &= ~(1 << pin); AR_WRITE(sc, AR_GPIO_IN_OUT, reg); } AR_WRITE_BARRIER(sc); } void ar5008_gpio_config_input(struct athn_softc *sc, int pin) { uint32_t reg; if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { /* Special case for AR7010. */ AR_SETBITS(sc, AR7010_GPIO_OE, 1 << pin); } else { reg = AR_READ(sc, AR_GPIO_OE_OUT); reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2); AR_WRITE(sc, AR_GPIO_OE_OUT, reg); } AR_WRITE_BARRIER(sc); } void ar5008_gpio_config_output(struct athn_softc *sc, int pin, int type) { uint32_t reg; int mux, off; if ((sc->flags & ATHN_FLAG_USB) && !AR_SREV_9271(sc)) { /* Special case for AR7010. */ AR_CLRBITS(sc, AR7010_GPIO_OE, 1 << pin); AR_WRITE_BARRIER(sc); return; } mux = pin / 6; off = pin % 6; reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux)); if (!AR_SREV_9280_20_OR_LATER(sc) && mux == 0) reg = (reg & ~0x1f0) | (reg & 0x1f0) << 1; reg &= ~(0x1f << (off * 5)); reg |= (type & 0x1f) << (off * 5); AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg); reg = AR_READ(sc, AR_GPIO_OE_OUT); reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2)); reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2); AR_WRITE(sc, AR_GPIO_OE_OUT, reg); AR_WRITE_BARRIER(sc); } void ar5008_rfsilent_init(struct athn_softc *sc) { uint32_t reg; /* Configure hardware radio switch. */ AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); reg = AR_READ(sc, AR_GPIO_INPUT_MUX2); reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0); AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg); ar5008_gpio_config_input(sc, sc->rfsilent_pin); AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB); if (!(sc->flags & ATHN_FLAG_RFSILENT_REVERSED)) { AR_SETBITS(sc, AR_GPIO_INTR_POL, AR_GPIO_INTR_POL_PIN(sc->rfsilent_pin)); } AR_WRITE_BARRIER(sc); } int ar5008_dma_alloc(struct athn_softc *sc) { int error; error = ar5008_tx_alloc(sc); if (error != 0) return (error); error = ar5008_rx_alloc(sc); if (error != 0) return (error); return (0); } void ar5008_dma_free(struct athn_softc *sc) { ar5008_tx_free(sc); ar5008_rx_free(sc); } int ar5008_tx_alloc(struct athn_softc *sc) { struct athn_tx_buf *bf; bus_size_t size; int error, nsegs, i; /* * Allocate a pool of Tx descriptors shared between all Tx queues. */ size = ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &sc->map); if (error != 0) goto fail; error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error != 0) goto fail; error = bus_dmamem_map(sc->sc_dmat, &sc->seg, 1, size, (caddr_t *)&sc->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); if (error != 0) goto fail; error = bus_dmamap_load_raw(sc->sc_dmat, sc->map, &sc->seg, 1, size, BUS_DMA_NOWAIT); if (error != 0) goto fail; SIMPLEQ_INIT(&sc->txbufs); for (i = 0; i < ATHN_NTXBUFS; i++) { bf = &sc->txpool[i]; error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ, AR5008_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT, &bf->bf_map); if (error != 0) { printf("%s: could not create Tx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } bf->bf_descs = &((struct ar_tx_desc *)sc->descs)[i * AR5008_MAX_SCATTER]; bf->bf_daddr = sc->map->dm_segs[0].ds_addr + i * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc); SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list); } return (0); fail: ar5008_tx_free(sc); return (error); } void ar5008_tx_free(struct athn_softc *sc) { struct athn_tx_buf *bf; int i; for (i = 0; i < ATHN_NTXBUFS; i++) { bf = &sc->txpool[i]; if (bf->bf_map != NULL) bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); } /* Free Tx descriptors. */ if (sc->map != NULL) { if (sc->descs != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->descs, ATHN_NTXBUFS * AR5008_MAX_SCATTER * sizeof(struct ar_tx_desc)); bus_dmamem_free(sc->sc_dmat, &sc->seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->map); } } int ar5008_rx_alloc(struct athn_softc *sc) { struct athn_rxq *rxq = &sc->rxq[0]; struct athn_rx_buf *bf; struct ar_rx_desc *ds; bus_size_t size; int error, nsegs, i; rxq->bf = mallocarray(ATHN_NRXBUFS, sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO); if (rxq->bf == NULL) return (ENOMEM); size = ATHN_NRXBUFS * sizeof(struct ar_rx_desc); error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &rxq->map); if (error != 0) goto fail; error = bus_dmamem_alloc(sc->sc_dmat, size, 0, 0, &rxq->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error != 0) goto fail; error = bus_dmamem_map(sc->sc_dmat, &rxq->seg, 1, size, (caddr_t *)&rxq->descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT); if (error != 0) goto fail; error = bus_dmamap_load_raw(sc->sc_dmat, rxq->map, &rxq->seg, 1, size, BUS_DMA_NOWAIT); if (error != 0) goto fail; for (i = 0; i < ATHN_NRXBUFS; i++) { bf = &rxq->bf[i]; ds = &((struct ar_rx_desc *)rxq->descs)[i]; error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1, ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &bf->bf_map); if (error != 0) { printf("%s: could not create Rx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* * Assumes MCLGETL returns cache-line-size aligned buffers. */ bf->bf_m = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ); if (bf->bf_m == NULL) { printf("%s: could not allocate Rx mbuf\n", sc->sc_dev.dv_xname); error = ENOBUFS; goto fail; } error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); if (error != 0) { printf("%s: could not DMA map Rx buffer\n", sc->sc_dev.dv_xname); goto fail; } bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, BUS_DMASYNC_PREREAD); bf->bf_desc = ds; bf->bf_daddr = rxq->map->dm_segs[0].ds_addr + i * sizeof(struct ar_rx_desc); } return (0); fail: ar5008_rx_free(sc); return (error); } void ar5008_rx_free(struct athn_softc *sc) { struct athn_rxq *rxq = &sc->rxq[0]; struct athn_rx_buf *bf; int i; if (rxq->bf == NULL) return; for (i = 0; i < ATHN_NRXBUFS; i++) { bf = &rxq->bf[i]; if (bf->bf_map != NULL) bus_dmamap_destroy(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); } free(rxq->bf, M_DEVBUF, 0); /* Free Rx descriptors. */ if (rxq->map != NULL) { if (rxq->descs != NULL) { bus_dmamap_unload(sc->sc_dmat, rxq->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)rxq->descs, ATHN_NRXBUFS * sizeof(struct ar_rx_desc)); bus_dmamem_free(sc->sc_dmat, &rxq->seg, 1); } bus_dmamap_destroy(sc->sc_dmat, rxq->map); } } void ar5008_rx_enable(struct athn_softc *sc) { struct athn_rxq *rxq = &sc->rxq[0]; struct athn_rx_buf *bf; struct ar_rx_desc *ds; int i; /* Setup and link Rx descriptors. */ SIMPLEQ_INIT(&rxq->head); rxq->lastds = NULL; for (i = 0; i < ATHN_NRXBUFS; i++) { bf = &rxq->bf[i]; ds = bf->bf_desc; memset(ds, 0, sizeof(*ds)); ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; ds->ds_ctl1 = SM(AR_RXC1_BUF_LEN, ATHN_RXBUFSZ); if (rxq->lastds != NULL) { ((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr; } SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); rxq->lastds = ds; } bus_dmamap_sync(sc->sc_dmat, rxq->map, 0, rxq->map->dm_mapsize, BUS_DMASYNC_PREREAD); /* Enable Rx. */ AR_WRITE(sc, AR_RXDP, SIMPLEQ_FIRST(&rxq->head)->bf_daddr); AR_WRITE(sc, AR_CR, AR_CR_RXE); AR_WRITE_BARRIER(sc); } #if NBPFILTER > 0 void ar5008_rx_radiotap(struct athn_softc *sc, struct mbuf *m, struct ar_rx_desc *ds) { #define IEEE80211_RADIOTAP_F_SHORTGI 0x80 /* XXX from FBSD */ struct athn_rx_radiotap_header *tap = &sc->sc_rxtap; struct ieee80211com *ic = &sc->sc_ic; uint64_t tsf; uint32_t tstamp; uint8_t rate; /* Extend the 15-bit timestamp from Rx descriptor to 64-bit TSF. */ tstamp = ds->ds_status2; tsf = AR_READ(sc, AR_TSF_U32); tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32); if ((tsf & 0x7fff) < tstamp) tsf -= 0x8000; tsf = (tsf & ~0x7fff) | tstamp; tap->wr_flags = IEEE80211_RADIOTAP_F_FCS; tap->wr_tsft = htole64(tsf); tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); tap->wr_dbm_antsignal = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); /* XXX noise. */ tap->wr_antenna = MS(ds->ds_status3, AR_RXS3_ANTENNA); tap->wr_rate = 0; /* In case it can't be found below. */ if (AR_SREV_5416_20_OR_LATER(sc)) rate = MS(ds->ds_status0, AR_RXS0_RATE); else rate = MS(ds->ds_status3, AR_RXS3_RATE); if (rate & 0x80) { /* HT. */ /* Bit 7 set means HT MCS instead of rate. */ tap->wr_rate = rate; if (!(ds->ds_status3 & AR_RXS3_GI)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI; } else if (rate & 0x10) { /* CCK. */ if (rate & 0x04) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; switch (rate & ~0x14) { case 0xb: tap->wr_rate = 2; break; case 0xa: tap->wr_rate = 4; break; case 0x9: tap->wr_rate = 11; break; case 0x8: tap->wr_rate = 22; break; } } else { /* OFDM. */ switch (rate) { case 0xb: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0xa: tap->wr_rate = 24; break; case 0xe: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xd: tap->wr_rate = 72; break; case 0x8: tap->wr_rate = 96; break; case 0xc: tap->wr_rate = 108; break; } } bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_DIRECTION_IN); } #endif int ar5008_ccmp_decap(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_key *k; struct ieee80211_frame *wh; struct ieee80211_rx_ba *ba; uint64_t pn, *prsc; u_int8_t *ivp; uint8_t tid; int hdrlen, hasqos; uintptr_t entry; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); ivp = mtod(m, u_int8_t *) + hdrlen; /* find key for decryption */ k = ieee80211_get_rxkey(ic, m, ni); if (k == NULL || k->k_cipher != IEEE80211_CIPHER_CCMP) return 1; /* Sanity checks to ensure this is really a key we installed. */ entry = (uintptr_t)k->k_priv; if (k->k_flags & IEEE80211_KEY_GROUP) { if (k->k_id >= IEEE80211_WEP_NKID || entry != k->k_id) return 1; } else { #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode == IEEE80211_M_HOSTAP) { if (entry != IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd)) return 1; } else #endif if (entry != IEEE80211_WEP_NKID) return 1; } /* Check that ExtIV bit is set. */ if (!(ivp[3] & IEEE80211_WEP_EXTIV)) return 1; hasqos = ieee80211_has_qos(wh); tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; ba = hasqos ? &ni->ni_rx_ba[tid] : NULL; prsc = &k->k_rsc[tid]; /* Extract the 48-bit PN from the CCMP header. */ pn = (uint64_t)ivp[0] | (uint64_t)ivp[1] << 8 | (uint64_t)ivp[4] << 16 | (uint64_t)ivp[5] << 24 | (uint64_t)ivp[6] << 32 | (uint64_t)ivp[7] << 40; if (pn <= *prsc) { ic->ic_stats.is_ccmp_replays++; return 1; } /* Last seen packet number is updated in ieee80211_inputm(). */ /* Strip MIC. IV will be stripped by ieee80211_inputm(). */ m_adj(m, -IEEE80211_CCMP_MICLEN); return 0; } static __inline int ar5008_rx_process(struct athn_softc *sc, struct mbuf_list *ml) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct athn_rxq *rxq = &sc->rxq[0]; struct athn_rx_buf *bf, *nbf; struct ar_rx_desc *ds; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *m, *m1; int error, len, michael_mic_failure = 0; bf = SIMPLEQ_FIRST(&rxq->head); if (__predict_false(bf == NULL)) { /* Should not happen. */ printf("%s: Rx queue is empty!\n", sc->sc_dev.dv_xname); return (ENOENT); } ds = bf->bf_desc; if (!(ds->ds_status8 & AR_RXS8_DONE)) { /* * On some parts, the status words can get corrupted * (including the "done" bit), so we check the next * descriptor "done" bit. If it is set, it is a good * indication that the status words are corrupted, so * we skip this descriptor and drop the frame. */ nbf = SIMPLEQ_NEXT(bf, bf_list); if (nbf != NULL && (((struct ar_rx_desc *)nbf->bf_desc)->ds_status8 & AR_RXS8_DONE)) { DPRINTF(("corrupted descriptor status=0x%x\n", ds->ds_status8)); /* HW will not "move" RXDP in this case, so do it. */ AR_WRITE(sc, AR_RXDP, nbf->bf_daddr); AR_WRITE_BARRIER(sc); ifp->if_ierrors++; goto skip; } return (EBUSY); } if (__predict_false(ds->ds_status1 & AR_RXS1_MORE)) { /* Drop frames that span multiple Rx descriptors. */ DPRINTF(("dropping split frame\n")); ifp->if_ierrors++; goto skip; } if (!(ds->ds_status8 & AR_RXS8_FRAME_OK)) { if (ds->ds_status8 & AR_RXS8_CRC_ERR) DPRINTFN(6, ("CRC error\n")); else if (ds->ds_status8 & AR_RXS8_PHY_ERR) DPRINTFN(6, ("PHY error=0x%x\n", MS(ds->ds_status8, AR_RXS8_PHY_ERR_CODE))); else if (ds->ds_status8 & (AR_RXS8_DECRYPT_CRC_ERR | AR_RXS8_KEY_MISS | AR_RXS8_DECRYPT_BUSY_ERR)) { DPRINTFN(6, ("Decryption CRC error\n")); ic->ic_stats.is_ccmp_dec_errs++; } else if (ds->ds_status8 & AR_RXS8_MICHAEL_ERR) { DPRINTFN(2, ("Michael MIC failure\n")); michael_mic_failure = 1; } if (!michael_mic_failure) { ifp->if_ierrors++; goto skip; } } else { if (ds->ds_status8 & (AR_RXS8_CRC_ERR | AR_RXS8_PHY_ERR | AR_RXS8_DECRYPT_CRC_ERR | AR_RXS8_MICHAEL_ERR)) { ifp->if_ierrors++; goto skip; } } len = MS(ds->ds_status1, AR_RXS1_DATA_LEN); if (__predict_false(len < IEEE80211_MIN_LEN || len > ATHN_RXBUFSZ)) { DPRINTF(("corrupted descriptor length=%d\n", len)); ifp->if_ierrors++; goto skip; } /* Allocate a new Rx buffer. */ m1 = MCLGETL(NULL, M_DONTWAIT, ATHN_RXBUFSZ); if (__predict_false(m1 == NULL)) { ic->ic_stats.is_rx_nombuf++; ifp->if_ierrors++; goto skip; } /* Sync and unmap the old Rx buffer. */ bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, bf->bf_map); /* Map the new Rx buffer. */ error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *), ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); if (__predict_false(error != 0)) { m_freem(m1); /* Remap the old Rx buffer or panic. */ error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ); KASSERT(error != 0); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ, BUS_DMASYNC_PREREAD); /* Write physical address of new Rx buffer. */ ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; m = bf->bf_m; bf->bf_m = m1; /* Finalize mbuf. */ m->m_pkthdr.len = m->m_len = len; wh = mtod(m, struct ieee80211_frame *); if (michael_mic_failure) { /* * Check that it is not a control frame * (invalid MIC failures on valid ctl frames). * Validate the transmitter's address to avoid passing * corrupt frames with bogus addresses to net80211. */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { switch (ic->ic_opmode) { #ifndef IEEE80211_STA_ONLY case IEEE80211_M_HOSTAP: if (ieee80211_find_node(ic, wh->i_addr2)) michael_mic_failure = 0; break; #endif case IEEE80211_M_STA: if (IEEE80211_ADDR_EQ(wh->i_addr2, ic->ic_bss->ni_macaddr)) michael_mic_failure = 0; break; case IEEE80211_M_MONITOR: michael_mic_failure = 0; break; default: break; } } if (michael_mic_failure) { /* Report Michael MIC failures to net80211. */ if ((ic->ic_rsnciphers & IEEE80211_CIPHER_TKIP) || ic->ic_rsngroupcipher == IEEE80211_CIPHER_TKIP) { ic->ic_stats.is_rx_locmicfail++; ieee80211_michael_mic_failure(ic, 0); } ifp->if_ierrors++; m_freem(m); goto skip; } } /* Grab a reference to the source node. */ ni = ieee80211_find_rxnode(ic, wh); /* Remove any HW padding after the 802.11 header. */ if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) { u_int hdrlen = ieee80211_get_hdrlen(wh); if (hdrlen & 3) { memmove((caddr_t)wh + 2, wh, hdrlen); m_adj(m, 2); } wh = mtod(m, struct ieee80211_frame *); } #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) ar5008_rx_radiotap(sc, m, ds); #endif /* Trim 802.11 FCS after radiotap. */ m_adj(m, -IEEE80211_CRC_LEN); /* Send the frame to the 802.11 layer. */ memset(&rxi, 0, sizeof(rxi)); rxi.rxi_rssi = MS(ds->ds_status4, AR_RXS4_RSSI_COMBINED); rxi.rxi_rssi += AR_DEFAULT_NOISE_FLOOR; rxi.rxi_tstamp = ds->ds_status2; if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL) && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && (ic->ic_flags & IEEE80211_F_RSNON) && (ni->ni_flags & IEEE80211_NODE_RXPROT) && ((!IEEE80211_IS_MULTICAST(wh->i_addr1) && ni->ni_rsncipher == IEEE80211_CIPHER_CCMP) || (IEEE80211_IS_MULTICAST(wh->i_addr1) && ni->ni_rsngroupcipher == IEEE80211_CIPHER_CCMP))) { if (ar5008_ccmp_decap(sc, m, ni) != 0) { ifp->if_ierrors++; ieee80211_release_node(ic, ni); m_freem(m); goto skip; } rxi.rxi_flags |= IEEE80211_RXI_HWDEC; } ieee80211_inputm(ifp, m, ni, &rxi, ml); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); skip: /* Unlink this descriptor from head. */ SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list); memset(&ds->ds_status0, 0, 36); /* XXX Really needed? */ ds->ds_status8 &= ~AR_RXS8_DONE; ds->ds_link = 0; /* Re-use this descriptor and link it to tail. */ if (__predict_true(!SIMPLEQ_EMPTY(&rxq->head))) ((struct ar_rx_desc *)rxq->lastds)->ds_link = bf->bf_daddr; else AR_WRITE(sc, AR_RXDP, bf->bf_daddr); SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list); rxq->lastds = ds; /* Re-enable Rx. */ AR_WRITE(sc, AR_CR, AR_CR_RXE); AR_WRITE_BARRIER(sc); return (0); } void ar5008_rx_intr(struct athn_softc *sc) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; while (ar5008_rx_process(sc, &ml) == 0); if_input(ifp, &ml); } int ar5008_tx_process(struct athn_softc *sc, int qid) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct athn_txq *txq = &sc->txq[qid]; struct athn_node *an; struct ieee80211_node *ni; struct athn_tx_buf *bf; struct ar_tx_desc *ds; uint8_t failcnt; int txfail = 0, rtscts; bf = SIMPLEQ_FIRST(&txq->head); if (bf == NULL) return (ENOENT); /* Get descriptor of last DMA segment. */ ds = &((struct ar_tx_desc *)bf->bf_descs)[bf->bf_map->dm_nsegs - 1]; if (!(ds->ds_status9 & AR_TXS9_DONE)) return (EBUSY); SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list); sc->sc_tx_timer = 0; /* These status bits are valid if “FRM_XMIT_OK” is clear. */ if ((ds->ds_status1 & AR_TXS1_FRM_XMIT_OK) == 0) { txfail = (ds->ds_status1 & AR_TXS1_EXCESSIVE_RETRIES); if (txfail) ifp->if_oerrors++; if (ds->ds_status1 & AR_TXS1_UNDERRUN) athn_inc_tx_trigger_level(sc); } an = (struct athn_node *)bf->bf_ni; ni = (struct ieee80211_node *)bf->bf_ni; /* * NB: the data fail count contains the number of un-acked tries * for the final series used. We must add the number of tries for * each series that was fully processed to punish transmit rates in * the earlier series which did not perform well. */ failcnt = MS(ds->ds_status1, AR_TXS1_DATA_FAIL_CNT); /* Assume two tries per series, as per AR_TXC2_XMIT_DATA_TRIESx. */ failcnt += MS(ds->ds_status9, AR_TXS9_FINAL_IDX) * 2; rtscts = (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)); /* Update rate control statistics. */ if ((ni->ni_flags & IEEE80211_NODE_HT) && ic->ic_fixed_mcs == -1) { const struct ieee80211_ht_rateset *rs = ieee80211_ra_get_ht_rateset(bf->bf_txmcs, 0 /* chan40 */, ieee80211_node_supports_ht_sgi20(ni)); unsigned int retries = 0, i; int mcs = bf->bf_txmcs; /* With RTS/CTS each Tx series used the same MCS. */ if (rtscts) { retries = failcnt; } else { for (i = 0; i < failcnt; i++) { if (mcs > rs->min_mcs) { ieee80211_ra_add_stats_ht(&an->rn, ic, ni, mcs, 1, 1); if (i % 2) /* two tries per series */ mcs--; } else retries++; } } if (txfail && retries == 0) { ieee80211_ra_add_stats_ht(&an->rn, ic, ni, mcs, 1, 1); } else { ieee80211_ra_add_stats_ht(&an->rn, ic, ni, mcs, retries + 1, retries); } if (ic->ic_state == IEEE80211_S_RUN) { #ifndef IEEE80211_STA_ONLY if (ic->ic_opmode != IEEE80211_M_HOSTAP || ni->ni_state == IEEE80211_STA_ASSOC) #endif ieee80211_ra_choose(&an->rn, ic, ni); } } else if (ic->ic_fixed_rate == -1) { an->amn.amn_txcnt++; if (failcnt > 0) an->amn.amn_retrycnt++; } DPRINTFN(5, ("Tx done qid=%d status1=%d fail count=%d\n", qid, ds->ds_status1, failcnt)); bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); bf->bf_m = NULL; ieee80211_release_node(ic, bf->bf_ni); bf->bf_ni = NULL; /* Link Tx buffer back to global free list. */ SIMPLEQ_INSERT_TAIL(&sc->txbufs, bf, bf_list); return (0); } void ar5008_tx_intr(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint16_t mask = 0; uint32_t reg; int qid; reg = AR_READ(sc, AR_ISR_S0_S); mask |= MS(reg, AR_ISR_S0_QCU_TXOK); mask |= MS(reg, AR_ISR_S0_QCU_TXDESC); reg = AR_READ(sc, AR_ISR_S1_S); mask |= MS(reg, AR_ISR_S1_QCU_TXERR); mask |= MS(reg, AR_ISR_S1_QCU_TXEOL); DPRINTFN(4, ("Tx interrupt mask=0x%x\n", mask)); for (qid = 0; mask != 0; mask >>= 1, qid++) { if (mask & 1) while (ar5008_tx_process(sc, qid) == 0); } if (!SIMPLEQ_EMPTY(&sc->txbufs)) { ifq_clr_oactive(&ifp->if_snd); ifp->if_start(ifp); } } #ifndef IEEE80211_STA_ONLY /* * Process Software Beacon Alert interrupts. */ int ar5008_swba_intr(struct athn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ieee80211_node *ni = ic->ic_bss; struct athn_tx_buf *bf = sc->bcnbuf; struct ieee80211_frame *wh; struct ar_tx_desc *ds; struct mbuf *m; uint8_t ridx, hwrate; int error, totlen; if (ic->ic_tim_mcast_pending && mq_empty(&ni->ni_savedq) && SIMPLEQ_EMPTY(&sc->txq[ATHN_QID_CAB].head)) ic->ic_tim_mcast_pending = 0; if (ic->ic_dtim_count == 0) ic->ic_dtim_count = ic->ic_dtim_period - 1; else ic->ic_dtim_count--; /* Make sure previous beacon has been sent. */ if (athn_tx_pending(sc, ATHN_QID_BEACON)) { DPRINTF(("beacon stuck\n")); return (EBUSY); } /* Get new beacon. */ m = ieee80211_beacon_alloc(ic, ic->ic_bss); if (__predict_false(m == NULL)) return (ENOBUFS); /* Assign sequence number. */ wh = mtod(m, struct ieee80211_frame *); *(uint16_t *)&wh->i_seq[0] = htole16(ic->ic_bss->ni_txseq << IEEE80211_SEQ_SEQ_SHIFT); ic->ic_bss->ni_txseq++; /* Unmap and free old beacon if any. */ if (__predict_true(bf->bf_m != NULL)) { bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bf->bf_map); m_freem(bf->bf_m); bf->bf_m = NULL; } /* DMA map new beacon. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (__predict_false(error != 0)) { m_freem(m); return (error); } bf->bf_m = m; /* Setup Tx descriptor (simplified ar5008_tx()). */ ds = bf->bf_descs; memset(ds, 0, sizeof(*ds)); totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; ds->ds_ctl0 = SM(AR_TXC0_FRAME_LEN, totlen); ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, AR_MAX_RATE_POWER); ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, AR_FRAME_TYPE_BEACON); ds->ds_ctl1 |= AR_TXC1_NO_ACK; ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, AR_ENCR_TYPE_CLEAR); /* Write number of tries. */ ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 1); /* Write Tx rate. */ ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1; hwrate = athn_rates[ridx].hwrate; ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, hwrate); /* Write Tx chains. */ ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->txchainmask); ds->ds_data = bf->bf_map->dm_segs[0].ds_addr; /* Segment length must be a multiple of 4. */ ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, (bf->bf_map->dm_segs[0].ds_len + 3) & ~3); bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Stop Tx DMA before putting the new beacon on the queue. */ athn_stop_tx_dma(sc, ATHN_QID_BEACON); AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr); for(;;) { if (SIMPLEQ_EMPTY(&sc->txbufs)) break; m = mq_dequeue(&ni->ni_savedq); if (m == NULL) break; if (!mq_empty(&ni->ni_savedq)) { /* more queued frames, set the more data bit */ wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; } if (sc->ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } /* Kick Tx. */ AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON); AR_WRITE_BARRIER(sc); return (0); } #endif int ar5008_intr(struct athn_softc *sc) { uint32_t intr, intr2, intr5, sync; /* Get pending interrupts. */ intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE); if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) { intr = AR_READ(sc, AR_INTR_SYNC_CAUSE); if (intr == AR_INTR_SPURIOUS || (intr & sc->isync) == 0) return (0); /* Not for us. */ } if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) intr = AR_READ(sc, AR_ISR); else intr = 0; sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->isync; if (intr == 0 && sync == 0) return (0); /* Not for us. */ if (intr != 0) { if (intr & AR_ISR_BCNMISC) { intr2 = AR_READ(sc, AR_ISR_S2); if (intr2 & AR_ISR_S2_TIM) /* TBD */; if (intr2 & AR_ISR_S2_TSFOOR) /* TBD */; } intr = AR_READ(sc, AR_ISR_RAC); if (intr == AR_INTR_SPURIOUS) return (1); #ifndef IEEE80211_STA_ONLY if (intr & AR_ISR_SWBA) ar5008_swba_intr(sc); #endif if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) ar5008_rx_intr(sc); if (intr & (AR_ISR_RXOK | AR_ISR_RXERR | AR_ISR_RXORN)) ar5008_rx_intr(sc); if (intr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) ar5008_tx_intr(sc); intr5 = AR_READ(sc, AR_ISR_S5_S); if (intr & AR_ISR_GENTMR) { if (intr5 & AR_ISR_GENTMR) { DPRINTF(("GENTMR trigger=%d thresh=%d\n", MS(intr5, AR_ISR_S5_GENTIMER_TRIG), MS(intr5, AR_ISR_S5_GENTIMER_THRESH))); } } if (intr5 & AR_ISR_S5_TIM_TIMER) /* TBD */; } if (sync != 0) { if (sync & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) /* TBD */; if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { AR_WRITE(sc, AR_RC, AR_RC_HOSTIF); AR_WRITE(sc, AR_RC, 0); } if ((sc->flags & ATHN_FLAG_RFSILENT) && (sync & AR_INTR_SYNC_GPIO_PIN(sc->rfsilent_pin))) { struct ifnet *ifp = &sc->sc_ic.ic_if; printf("%s: radio switch turned off\n", sc->sc_dev.dv_xname); /* Turn the interface down. */ athn_stop(ifp, 1); return (1); } AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync); (void)AR_READ(sc, AR_INTR_SYNC_CAUSE); } return (1); } int ar5008_ccmp_encap(struct mbuf *m, u_int hdrlen, struct ieee80211_key *k) { struct mbuf *n; uint8_t *ivp; int off; /* Insert IV for CCMP hardware encryption. */ n = m_makespace(m, hdrlen, IEEE80211_CCMP_HDRLEN, &off); if (n == NULL) { m_freem(m); return (ENOBUFS); } ivp = mtod(n, uint8_t *) + off; k->k_tsc++; ivp[0] = k->k_tsc; ivp[1] = k->k_tsc >> 8; ivp[2] = 0; ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; ivp[4] = k->k_tsc >> 16; ivp[5] = k->k_tsc >> 24; ivp[6] = k->k_tsc >> 32; ivp[7] = k->k_tsc >> 40; return 0; } int ar5008_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int txflags) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_key *k = NULL; struct ieee80211_frame *wh; struct athn_series series[4]; struct ar_tx_desc *ds, *lastds; struct athn_txq *txq; struct athn_tx_buf *bf; struct athn_node *an = (void *)ni; uintptr_t entry; uint16_t qos; uint8_t txpower, type, encrtype, tid, ridx[4]; int i, error, totlen, hasqos, qid; /* Grab a Tx buffer from our global free list. */ bf = SIMPLEQ_FIRST(&sc->txbufs); KASSERT(bf != NULL); /* Map 802.11 frame type to hardware frame type. */ wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { /* NB: Beacons do not use ar5008_tx(). */ if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_PROBE_RESP) type = AR_FRAME_TYPE_PROBE_RESP; else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_ATIM) type = AR_FRAME_TYPE_ATIM; else type = AR_FRAME_TYPE_NORMAL; } else if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) { type = AR_FRAME_TYPE_PSPOLL; } else type = AR_FRAME_TYPE_NORMAL; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if (k->k_cipher == IEEE80211_CIPHER_CCMP) { u_int hdrlen = ieee80211_get_hdrlen(wh); if (ar5008_ccmp_encap(m, hdrlen, k) != 0) return (ENOBUFS); } else { if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return (ENOBUFS); k = NULL; /* skip hardware crypto further below */ } wh = mtod(m, struct ieee80211_frame *); } /* XXX 2-byte padding for QoS and 4-addr headers. */ /* Select the HW Tx queue to use for this frame. */ if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)]; } else if (type == AR_FRAME_TYPE_PSPOLL) { qid = ATHN_QID_PSPOLL; } else if (txflags & ATHN_TXFLAG_CAB) { qid = ATHN_QID_CAB; } else qid = ATHN_QID_AC_BE; txq = &sc->txq[qid]; /* Select the transmit rates to use for this frame. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA) { /* Use lowest rate for all tries. */ ridx[0] = ridx[1] = ridx[2] = ridx[3] = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1); } else if ((ni->ni_flags & IEEE80211_NODE_HT) && ic->ic_fixed_mcs != -1) { /* Use same fixed rate for all tries. */ ridx[0] = ridx[1] = ridx[2] = ridx[3] = ATHN_RIDX_MCS0 + ic->ic_fixed_mcs; } else if (ic->ic_fixed_rate != -1) { /* Use same fixed rate for all tries. */ ridx[0] = ridx[1] = ridx[2] = ridx[3] = sc->fixed_ridx; } else { /* Use fallback table of the node. */ int txrate; if (ni->ni_flags & IEEE80211_NODE_HT) txrate = ATHN_NUM_LEGACY_RATES + ni->ni_txmcs; else txrate = ni->ni_txrate; for (i = 0; i < 4; i++) { ridx[i] = an->ridx[txrate]; txrate = an->fallback[txrate]; } } #if NBPFILTER > 0 if (__predict_false(sc->sc_drvbpf != NULL)) { struct athn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; /* Use initial transmit rate. */ if (athn_rates[ridx[0]].hwrate & 0x80) /* MCS */ tap->wt_rate = athn_rates[ridx[0]].hwrate; else tap->wt_rate = athn_rates[ridx[0]].rate; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); if (athn_rates[ridx[0]].phy == IEEE80211_T_DS && ridx[0] != ATHN_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_DIRECTION_OUT); } #endif /* DMA map mbuf. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (__predict_false(error != 0)) { if (error != EFBIG) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return (error); } /* * DMA mapping requires too many DMA segments; linearize * mbuf in kernel virtual address space and retry. */ if (m_defrag(m, M_DONTWAIT) != 0) { m_freem(m); return (ENOBUFS); } error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return (error); } } bf->bf_m = m; bf->bf_ni = ni; bf->bf_txmcs = ni->ni_txmcs; bf->bf_txflags = txflags; wh = mtod(m, struct ieee80211_frame *); totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; /* Clear all Tx descriptors that we will use. */ memset(bf->bf_descs, 0, bf->bf_map->dm_nsegs * sizeof(*ds)); /* Setup first Tx descriptor. */ ds = bf->bf_descs; ds->ds_ctl0 = AR_TXC0_INTR_REQ | AR_TXC0_CLR_DEST_MASK; txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */ ds->ds_ctl0 |= SM(AR_TXC0_XMIT_POWER, txpower); ds->ds_ctl1 = SM(AR_TXC1_FRAME_TYPE, type); if (IEEE80211_IS_MULTICAST(wh->i_addr1) || (hasqos && (qos & IEEE80211_QOS_ACK_POLICY_MASK) == IEEE80211_QOS_ACK_POLICY_NOACK)) ds->ds_ctl1 |= AR_TXC1_NO_ACK; if (k != NULL) { /* Map 802.11 cipher to hardware encryption type. */ if (k->k_cipher == IEEE80211_CIPHER_CCMP) { encrtype = AR_ENCR_TYPE_AES; totlen += IEEE80211_CCMP_MICLEN; } else panic("unsupported cipher"); /* * NB: The key cache entry index is stored in the key * private field when the key is installed. */ entry = (uintptr_t)k->k_priv; ds->ds_ctl1 |= SM(AR_TXC1_DEST_IDX, entry); ds->ds_ctl0 |= AR_TXC0_DEST_IDX_VALID; } else encrtype = AR_ENCR_TYPE_CLEAR; ds->ds_ctl6 = SM(AR_TXC6_ENCR_TYPE, encrtype); /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { enum ieee80211_htprot htprot; htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK); /* NB: Group frames are sent using CCK in 802.11b/g. */ if (totlen > ic->ic_rtsthreshold) { ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; } else if (((ic->ic_flags & IEEE80211_F_USEPROT) && athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) || ((ni->ni_flags & IEEE80211_NODE_HT) && htprot != IEEE80211_HTPROT_NONE)) { if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) ds->ds_ctl0 |= AR_TXC0_RTS_ENABLE; else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) ds->ds_ctl0 |= AR_TXC0_CTS_ENABLE; } } /* * Disable multi-rate retries when protection is used. * The RTS/CTS frame's duration field is fixed and won't be * updated by hardware when the data rate changes. */ if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { ridx[1] = ridx[2] = ridx[3] = ridx[0]; } /* Setup multi-rate retries. */ for (i = 0; i < 4; i++) { series[i].hwrate = athn_rates[ridx[i]].hwrate; if (athn_rates[ridx[i]].phy == IEEE80211_T_DS && ridx[i] != ATHN_RIDX_CCK1 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) series[i].hwrate |= 0x04; /* Compute duration for each series. */ series[i].dur = athn_txtime(sc, totlen, ridx[i], ic->ic_flags); if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { /* Account for ACK duration. */ series[i].dur += athn_txtime(sc, IEEE80211_ACK_LEN, athn_rates[ridx[i]].rspridx, ic->ic_flags); } } /* Write number of tries for each series. */ ds->ds_ctl2 = SM(AR_TXC2_XMIT_DATA_TRIES0, 2) | SM(AR_TXC2_XMIT_DATA_TRIES1, 2) | SM(AR_TXC2_XMIT_DATA_TRIES2, 2) | SM(AR_TXC2_XMIT_DATA_TRIES3, 4); /* Tell HW to update duration field in 802.11 header. */ if (type != AR_FRAME_TYPE_PSPOLL) ds->ds_ctl2 |= AR_TXC2_DUR_UPDATE_ENA; /* Write Tx rate for each series. */ ds->ds_ctl3 = SM(AR_TXC3_XMIT_RATE0, series[0].hwrate) | SM(AR_TXC3_XMIT_RATE1, series[1].hwrate) | SM(AR_TXC3_XMIT_RATE2, series[2].hwrate) | SM(AR_TXC3_XMIT_RATE3, series[3].hwrate); /* Write duration for each series. */ ds->ds_ctl4 = SM(AR_TXC4_PACKET_DUR0, series[0].dur) | SM(AR_TXC4_PACKET_DUR1, series[1].dur); ds->ds_ctl5 = SM(AR_TXC5_PACKET_DUR2, series[2].dur) | SM(AR_TXC5_PACKET_DUR3, series[3].dur); /* Use the same Tx chains for all tries. */ ds->ds_ctl7 = SM(AR_TXC7_CHAIN_SEL0, sc->txchainmask) | SM(AR_TXC7_CHAIN_SEL1, sc->txchainmask) | SM(AR_TXC7_CHAIN_SEL2, sc->txchainmask) | SM(AR_TXC7_CHAIN_SEL3, sc->txchainmask); #ifdef notyet /* Use the same short GI setting for all tries. */ if (ni->ni_htcaps & IEEE80211_HTCAP_SGI20) ds->ds_ctl7 |= AR_TXC7_GI0123; /* Use the same channel width for all tries. */ if (ic->ic_flags & IEEE80211_F_CBW40) ds->ds_ctl7 |= AR_TXC7_2040_0123; #endif /* Set Tx power for series 1 - 3 */ ds->ds_ctl9 = SM(AR_TXC9_XMIT_POWER1, txpower); ds->ds_ctl10 = SM(AR_TXC10_XMIT_POWER2, txpower); ds->ds_ctl11 = SM(AR_TXC11_XMIT_POWER3, txpower); if (ds->ds_ctl0 & (AR_TXC0_RTS_ENABLE | AR_TXC0_CTS_ENABLE)) { uint8_t protridx, hwrate; uint16_t dur = 0; /* Use the same protection mode for all tries. */ if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { ds->ds_ctl4 |= AR_TXC4_RTSCTS_QUAL01; ds->ds_ctl5 |= AR_TXC5_RTSCTS_QUAL23; } /* Select protection rate (suboptimal but ok). */ protridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2; if (ds->ds_ctl0 & AR_TXC0_RTS_ENABLE) { /* Account for CTS duration. */ dur += athn_txtime(sc, IEEE80211_ACK_LEN, athn_rates[protridx].rspridx, ic->ic_flags); } dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags); if (!(ds->ds_ctl1 & AR_TXC1_NO_ACK)) { /* Account for ACK duration. */ dur += athn_txtime(sc, IEEE80211_ACK_LEN, athn_rates[ridx[0]].rspridx, ic->ic_flags); } /* Write protection frame duration and rate. */ ds->ds_ctl2 |= SM(AR_TXC2_BURST_DUR, dur); hwrate = athn_rates[protridx].hwrate; if (protridx == ATHN_RIDX_CCK2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) hwrate |= 0x04; ds->ds_ctl7 |= SM(AR_TXC7_RTSCTS_RATE, hwrate); } /* Finalize first Tx descriptor and fill others (if any). */ ds->ds_ctl0 |= SM(AR_TXC0_FRAME_LEN, totlen); for (i = 0; i < bf->bf_map->dm_nsegs; i++, ds++) { ds->ds_data = bf->bf_map->dm_segs[i].ds_addr; ds->ds_ctl1 |= SM(AR_TXC1_BUF_LEN, bf->bf_map->dm_segs[i].ds_len); if (i != bf->bf_map->dm_nsegs - 1) ds->ds_ctl1 |= AR_TXC1_MORE; ds->ds_link = 0; /* Chain Tx descriptor. */ if (i != 0) lastds->ds_link = bf->bf_daddr + i * sizeof(*ds); lastds = ds; } bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (!SIMPLEQ_EMPTY(&txq->head)) ((struct ar_tx_desc *)txq->lastds)->ds_link = bf->bf_daddr; else AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr); txq->lastds = lastds; SIMPLEQ_REMOVE_HEAD(&sc->txbufs, bf_list); SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list); ds = bf->bf_descs; DPRINTFN(6, ("Tx qid=%d nsegs=%d ctl0=0x%x ctl1=0x%x ctl3=0x%x\n", qid, bf->bf_map->dm_nsegs, ds->ds_ctl0, ds->ds_ctl1, ds->ds_ctl3)); /* Kick Tx. */ AR_WRITE(sc, AR_Q_TXE, 1 << qid); AR_WRITE_BARRIER(sc); return (0); } void ar5008_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c) { uint32_t reg; reg = IEEE80211_IS_CHAN_2GHZ(c) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (!AR_SREV_9280_10_OR_LATER(sc)) { reg |= IEEE80211_IS_CHAN_2GHZ(c) ? AR_PHY_MODE_RF2GHZ : AR_PHY_MODE_RF5GHZ; } else if (IEEE80211_IS_CHAN_5GHZ(c) && (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) { reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE; } AR_WRITE(sc, AR_PHY_MODE, reg); AR_WRITE_BARRIER(sc); } static __inline uint32_t ar5008_synth_delay(struct athn_softc *sc) { uint32_t delay; delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY); if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B) delay = (delay * 4) / 22; else delay = delay / 10; /* in 100ns steps */ return (delay); } int ar5008_rf_bus_request(struct athn_softc *sc) { int ntries; /* Request RF Bus grant. */ AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); for (ntries = 0; ntries < 10000; ntries++) { if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN) return (0); DELAY(10); } DPRINTF(("could not kill baseband Rx")); return (ETIMEDOUT); } void ar5008_rf_bus_release(struct athn_softc *sc) { /* Wait for the synthesizer to settle. */ DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar5008_synth_delay(sc)); /* Release the RF Bus grant. */ AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0); AR_WRITE_BARRIER(sc); } void ar5008_set_phy(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t phy; if (AR_SREV_9285_10_OR_LATER(sc)) phy = AR_READ(sc, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO; else phy = 0; phy |= AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH; if (extc != NULL) { phy |= AR_PHY_FC_DYN2040_EN; if (extc > c) /* XXX */ phy |= AR_PHY_FC_DYN2040_PRI_CH; } AR_WRITE(sc, AR_PHY_TURBO, phy); AR_WRITE(sc, AR_2040_MODE, (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0); /* Set global transmit timeout. */ AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25)); /* Set carrier sense timeout. */ AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15)); AR_WRITE_BARRIER(sc); } void ar5008_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t coeff, exp, man, reg; /* Set Delta Slope (exponent and mantissa). */ coeff = (100 << 24) / c->ic_freq; athn_get_delta_slope(coeff, &exp, &man); DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man)); reg = AR_READ(sc, AR_PHY_TIMING3); reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp); reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man); AR_WRITE(sc, AR_PHY_TIMING3, reg); /* For Short GI, coeff is 9/10 that of normal coeff. */ coeff = (9 * coeff) / 10; athn_get_delta_slope(coeff, &exp, &man); DPRINTFN(5, ("delta slope coeff exp=%u man=%u\n", exp, man)); reg = AR_READ(sc, AR_PHY_HALFGI); reg = RW(reg, AR_PHY_HALFGI_DSC_EXP, exp); reg = RW(reg, AR_PHY_HALFGI_DSC_MAN, man); AR_WRITE(sc, AR_PHY_HALFGI, reg); AR_WRITE_BARRIER(sc); } void ar5008_enable_antenna_diversity(struct athn_softc *sc) { AR_SETBITS(sc, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); AR_WRITE_BARRIER(sc); } void ar5008_init_baseband(struct athn_softc *sc) { uint32_t synth_delay; synth_delay = ar5008_synth_delay(sc); /* Activate the PHY (includes baseband activate and synthesizer on). */ AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); AR_WRITE_BARRIER(sc); DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay); } void ar5008_disable_phy(struct athn_softc *sc) { AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); AR_WRITE_BARRIER(sc); } void ar5008_init_chains(struct athn_softc *sc) { if (sc->rxchainmask == 0x5 || sc->txchainmask == 0x5) AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); /* Setup chain masks. */ if (sc->mac_ver <= AR_SREV_VERSION_9160 && (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5)) { AR_WRITE(sc, AR_PHY_RX_CHAINMASK, 0x7); AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, 0x7); } else { AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask); AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask); } AR_WRITE(sc, AR_SELFGEN_MASK, sc->txchainmask); AR_WRITE_BARRIER(sc); } void ar5008_set_rxchains(struct athn_softc *sc) { if (sc->rxchainmask == 0x3 || sc->rxchainmask == 0x5) { AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->rxchainmask); AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->rxchainmask); AR_WRITE_BARRIER(sc); } } void ar5008_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) { /* Sign-extends 9-bit value (assumes upper bits are zeroes). */ #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100) uint32_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { reg = AR_READ(sc, AR_PHY_CCA(i)); if (AR_SREV_9280_10_OR_LATER(sc)) nf[i] = MS(reg, AR9280_PHY_MINCCA_PWR); else nf[i] = MS(reg, AR_PHY_MINCCA_PWR); nf[i] = SIGN_EXT(nf[i]); reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); if (AR_SREV_9280_10_OR_LATER(sc)) nf_ext[i] = MS(reg, AR9280_PHY_EXT_MINCCA_PWR); else nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR); nf_ext[i] = SIGN_EXT(nf_ext[i]); } #undef SIGN_EXT } void ar5008_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext) { uint32_t reg; int i; for (i = 0; i < sc->nrxchains; i++) { reg = AR_READ(sc, AR_PHY_CCA(i)); reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]); AR_WRITE(sc, AR_PHY_CCA(i), reg); reg = AR_READ(sc, AR_PHY_EXT_CCA(i)); reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]); AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg); } AR_WRITE_BARRIER(sc); } int ar5008_get_noisefloor(struct athn_softc *sc) { int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; int i; if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { /* Noisefloor calibration not finished. */ return 0; } /* Noisefloor calibration is finished. */ ar5008_read_noisefloor(sc, nf, nf_ext); /* Update noisefloor history. */ for (i = 0; i < sc->nrxchains; i++) { sc->nf_hist[sc->nf_hist_cur].nf[i] = nf[i]; sc->nf_hist[sc->nf_hist_cur].nf_ext[i] = nf_ext[i]; } if (++sc->nf_hist_cur >= ATHN_NF_CAL_HIST_MAX) sc->nf_hist_cur = 0; return 1; } void ar5008_bb_load_noisefloor(struct athn_softc *sc) { int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS]; int i, ntries; /* Write filtered noisefloor values. */ for (i = 0; i < sc->nrxchains; i++) { nf[i] = sc->nf_priv[i] * 2; nf_ext[i] = sc->nf_ext_priv[i] * 2; } ar5008_write_noisefloor(sc, nf, nf_ext); /* Load filtered noisefloor values into baseband. */ AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); /* Wait for load to complete. */ for (ntries = 0; ntries < 1000; ntries++) { if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)) break; DELAY(50); } if (ntries == 1000) { DPRINTF(("failed to load noisefloor values\n")); return; } /* * Restore noisefloor values to initial (max) values. These will * be used as initial values during the next NF calibration. */ for (i = 0; i < AR_MAX_CHAINS; i++) nf[i] = nf_ext[i] = AR_DEFAULT_NOISE_FLOOR; ar5008_write_noisefloor(sc, nf, nf_ext); } void ar5008_apply_noisefloor(struct athn_softc *sc) { uint32_t agc_nfcal; agc_nfcal = AR_READ(sc, AR_PHY_AGC_CONTROL) & (AR_PHY_AGC_CONTROL_NF | AR_PHY_AGC_CONTROL_ENABLE_NF | AR_PHY_AGC_CONTROL_NO_UPDATE_NF); if (agc_nfcal & AR_PHY_AGC_CONTROL_NF) { /* Pause running NF calibration while values are updated. */ AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); AR_WRITE_BARRIER(sc); } ar5008_bb_load_noisefloor(sc); if (agc_nfcal & AR_PHY_AGC_CONTROL_NF) { /* Restart interrupted NF calibration. */ AR_SETBITS(sc, AR_PHY_AGC_CONTROL, agc_nfcal); AR_WRITE_BARRIER(sc); } } void ar5008_do_noisefloor_calib(struct athn_softc *sc) { AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); AR_WRITE_BARRIER(sc); } void ar5008_init_noisefloor_calib(struct athn_softc *sc) { AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); AR_WRITE_BARRIER(sc); } void ar5008_do_calib(struct athn_softc *sc) { uint32_t mode, reg; int log; reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); log = AR_SREV_9280_10_OR_LATER(sc) ? 10 : 2; reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX, log); AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); if (sc->cur_calib_mask & ATHN_CAL_ADC_GAIN) mode = AR_PHY_CALMODE_ADC_GAIN; else if (sc->cur_calib_mask & ATHN_CAL_ADC_DC) mode = AR_PHY_CALMODE_ADC_DC_PER; else /* ATHN_CAL_IQ */ mode = AR_PHY_CALMODE_IQ; AR_WRITE(sc, AR_PHY_CALMODE, mode); DPRINTF(("starting calibration mode=0x%x\n", mode)); AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_DO_CAL); AR_WRITE_BARRIER(sc); } void ar5008_next_calib(struct athn_softc *sc) { /* Check if we have any calibration in progress. */ if (sc->cur_calib_mask != 0) { if (!(AR_READ(sc, AR_PHY_TIMING_CTRL4_0) & AR_PHY_TIMING_CTRL4_DO_CAL)) { /* Calibration completed for current sample. */ if (sc->cur_calib_mask & ATHN_CAL_ADC_GAIN) ar5008_calib_adc_gain(sc); else if (sc->cur_calib_mask & ATHN_CAL_ADC_DC) ar5008_calib_adc_dc_off(sc); else /* ATHN_CAL_IQ */ ar5008_calib_iq(sc); } } } void ar5008_calib_iq(struct athn_softc *sc) { struct athn_iq_cal *cal; uint32_t reg, i_coff_denom, q_coff_denom; int32_t i_coff, q_coff; int i, iq_corr_neg; for (i = 0; i < AR_MAX_CHAINS; i++) { cal = &sc->calib.iq[i]; /* Accumulate IQ calibration measures (clear on read). */ cal->pwr_meas_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); cal->pwr_meas_q += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); cal->iq_corr_meas += (int32_t)AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); } if (!AR_SREV_9280_10_OR_LATER(sc) && ++sc->calib.nsamples < AR_CAL_SAMPLES) { /* Not enough samples accumulated, continue. */ ar5008_do_calib(sc); return; } for (i = 0; i < sc->nrxchains; i++) { cal = &sc->calib.iq[i]; if (cal->pwr_meas_q == 0) continue; if ((iq_corr_neg = cal->iq_corr_meas < 0)) cal->iq_corr_meas = -cal->iq_corr_meas; i_coff_denom = (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 128; q_coff_denom = cal->pwr_meas_q / 64; if (i_coff_denom == 0 || q_coff_denom == 0) continue; /* Prevents division by zero. */ i_coff = cal->iq_corr_meas / i_coff_denom; q_coff = (cal->pwr_meas_i / q_coff_denom) - 64; /* Negate i_coff if iq_corr_meas is positive. */ if (!iq_corr_neg) i_coff = 0x40 - (i_coff & 0x3f); if (q_coff > 15) q_coff = 15; else if (q_coff <= -16) q_coff = -16; /* XXX Linux has a bug here? */ DPRINTFN(2, ("IQ calibration for chain %d\n", i)); reg = AR_READ(sc, AR_PHY_TIMING_CTRL4(i)); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, i_coff); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, q_coff); AR_WRITE(sc, AR_PHY_TIMING_CTRL4(i), reg); } /* Apply new settings. */ AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0, AR_PHY_TIMING_CTRL4_IQCORR_ENABLE); AR_WRITE_BARRIER(sc); /* IQ calibration done. */ sc->cur_calib_mask &= ~ATHN_CAL_IQ; memset(&sc->calib, 0, sizeof(sc->calib)); } void ar5008_calib_adc_gain(struct athn_softc *sc) { struct athn_adc_cal *cal; uint32_t reg, gain_mismatch_i, gain_mismatch_q; int i; for (i = 0; i < AR_MAX_CHAINS; i++) { cal = &sc->calib.adc_gain[i]; /* Accumulate ADC gain measures (clear on read). */ cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); } if (!AR_SREV_9280_10_OR_LATER(sc) && ++sc->calib.nsamples < AR_CAL_SAMPLES) { /* Not enough samples accumulated, continue. */ ar5008_do_calib(sc); return; } for (i = 0; i < sc->nrxchains; i++) { cal = &sc->calib.adc_gain[i]; if (cal->pwr_meas_odd_i == 0 || cal->pwr_meas_even_q == 0) continue; /* Prevents division by zero. */ gain_mismatch_i = (cal->pwr_meas_even_i * 32) / cal->pwr_meas_odd_i; gain_mismatch_q = (cal->pwr_meas_odd_q * 32) / cal->pwr_meas_even_q; DPRINTFN(2, ("ADC gain calibration for chain %d\n", i)); reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IGAIN, gain_mismatch_i); reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QGAIN, gain_mismatch_q); AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); } /* Apply new settings. */ AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), AR_PHY_NEW_ADC_GAIN_CORR_ENABLE); AR_WRITE_BARRIER(sc); /* ADC gain calibration done. */ sc->cur_calib_mask &= ~ATHN_CAL_ADC_GAIN; memset(&sc->calib, 0, sizeof(sc->calib)); } void ar5008_calib_adc_dc_off(struct athn_softc *sc) { struct athn_adc_cal *cal; int32_t dc_offset_mismatch_i, dc_offset_mismatch_q; uint32_t reg; int count, i; for (i = 0; i < AR_MAX_CHAINS; i++) { cal = &sc->calib.adc_dc_offset[i]; /* Accumulate ADC DC offset measures (clear on read). */ cal->pwr_meas_odd_i += AR_READ(sc, AR_PHY_CAL_MEAS_0(i)); cal->pwr_meas_even_i += AR_READ(sc, AR_PHY_CAL_MEAS_1(i)); cal->pwr_meas_odd_q += AR_READ(sc, AR_PHY_CAL_MEAS_2(i)); cal->pwr_meas_even_q += AR_READ(sc, AR_PHY_CAL_MEAS_3(i)); } if (!AR_SREV_9280_10_OR_LATER(sc) && ++sc->calib.nsamples < AR_CAL_SAMPLES) { /* Not enough samples accumulated, continue. */ ar5008_do_calib(sc); return; } if (AR_SREV_9280_10_OR_LATER(sc)) count = (1 << (10 + 5)); else count = (1 << ( 2 + 5)) * AR_CAL_SAMPLES; for (i = 0; i < sc->nrxchains; i++) { cal = &sc->calib.adc_dc_offset[i]; dc_offset_mismatch_i = (cal->pwr_meas_even_i - cal->pwr_meas_odd_i * 2) / count; dc_offset_mismatch_q = (cal->pwr_meas_odd_q - cal->pwr_meas_even_q * 2) / count; DPRINTFN(2, ("ADC DC offset calibration for chain %d\n", i)); reg = AR_READ(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i)); reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_QDC, dc_offset_mismatch_q); reg = RW(reg, AR_PHY_NEW_ADC_DC_GAIN_IDC, dc_offset_mismatch_i); AR_WRITE(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), reg); } /* Apply new settings. */ AR_SETBITS(sc, AR_PHY_NEW_ADC_DC_GAIN_CORR(0), AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE); AR_WRITE_BARRIER(sc); /* ADC DC offset calibration done. */ sc->cur_calib_mask &= ~ATHN_CAL_ADC_DC; memset(&sc->calib, 0, sizeof(sc->calib)); } void ar5008_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT]) { AR_WRITE(sc, AR_PHY_POWER_TX_RATE1, (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 | (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 | (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 | (power[ATHN_POWER_OFDM6 ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE2, (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 | (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 | (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 | (power[ATHN_POWER_OFDM24 ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE3, (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 | (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 | (power[ATHN_POWER_XR ] & 0x3f) << 8 | (power[ATHN_POWER_CCK1_LP ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE4, (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 | (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 | (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 | (power[ATHN_POWER_CCK55_LP] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE5, (power[ATHN_POWER_HT20(3) ] & 0x3f) << 24 | (power[ATHN_POWER_HT20(2) ] & 0x3f) << 16 | (power[ATHN_POWER_HT20(1) ] & 0x3f) << 8 | (power[ATHN_POWER_HT20(0) ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE6, (power[ATHN_POWER_HT20(7) ] & 0x3f) << 24 | (power[ATHN_POWER_HT20(6) ] & 0x3f) << 16 | (power[ATHN_POWER_HT20(5) ] & 0x3f) << 8 | (power[ATHN_POWER_HT20(4) ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE7, (power[ATHN_POWER_HT40(3) ] & 0x3f) << 24 | (power[ATHN_POWER_HT40(2) ] & 0x3f) << 16 | (power[ATHN_POWER_HT40(1) ] & 0x3f) << 8 | (power[ATHN_POWER_HT40(0) ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE8, (power[ATHN_POWER_HT40(7) ] & 0x3f) << 24 | (power[ATHN_POWER_HT40(6) ] & 0x3f) << 16 | (power[ATHN_POWER_HT40(5) ] & 0x3f) << 8 | (power[ATHN_POWER_HT40(4) ] & 0x3f)); AR_WRITE(sc, AR_PHY_POWER_TX_RATE9, (power[ATHN_POWER_OFDM_EXT] & 0x3f) << 24 | (power[ATHN_POWER_CCK_EXT ] & 0x3f) << 16 | (power[ATHN_POWER_OFDM_DUP] & 0x3f) << 8 | (power[ATHN_POWER_CCK_DUP ] & 0x3f)); AR_WRITE_BARRIER(sc); } void ar5008_set_viterbi_mask(struct athn_softc *sc, int bin) { uint32_t mask[4], reg; uint8_t m[62], p[62]; /* XXX use bit arrays? */ int i, bit, cur; /* Compute pilot mask. */ cur = -6000; for (i = 0; i < 4; i++) { mask[i] = 0; for (bit = 0; bit < 30; bit++) { if (abs(cur - bin) < 100) mask[i] |= 1 << bit; cur += 100; } if (cur == 0) /* Skip entry "0". */ cur = 100; } /* Write entries from -6000 to -3100. */ AR_WRITE(sc, AR_PHY_TIMING7, mask[0]); AR_WRITE(sc, AR_PHY_TIMING9, mask[0]); /* Write entries from -3000 to -100. */ AR_WRITE(sc, AR_PHY_TIMING8, mask[1]); AR_WRITE(sc, AR_PHY_TIMING10, mask[1]); /* Write entries from 100 to 3000. */ AR_WRITE(sc, AR_PHY_PILOT_MASK_01_30, mask[2]); AR_WRITE(sc, AR_PHY_CHANNEL_MASK_01_30, mask[2]); /* Write entries from 3100 to 6000. */ AR_WRITE(sc, AR_PHY_PILOT_MASK_31_60, mask[3]); AR_WRITE(sc, AR_PHY_CHANNEL_MASK_31_60, mask[3]); /* Compute viterbi mask. */ for (cur = 6100; cur >= 0; cur -= 100) p[+cur / 100] = abs(cur - bin) < 75; for (cur = -100; cur >= -6100; cur -= 100) m[-cur / 100] = abs(cur - bin) < 75; /* Write viterbi mask (XXX needs to be reworked). */ reg = m[46] << 30 | m[47] << 28 | m[48] << 26 | m[49] << 24 | m[50] << 22 | m[51] << 20 | m[52] << 18 | m[53] << 16 | m[54] << 14 | m[55] << 12 | m[56] << 10 | m[57] << 8 | m[58] << 6 | m[59] << 4 | m[60] << 2 | m[61] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK_1, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_M_46_61, reg); /* XXX m[48] should be m[38] ? */ reg = m[31] << 28 | m[32] << 26 | m[33] << 24 | m[34] << 22 | m[35] << 20 | m[36] << 18 | m[37] << 16 | m[48] << 14 | m[39] << 12 | m[40] << 10 | m[41] << 8 | m[42] << 6 | m[43] << 4 | m[44] << 2 | m[45] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK_2, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_M_31_45, reg); /* XXX This one is weird too. */ reg = m[16] << 30 | m[16] << 28 | m[18] << 26 | m[18] << 24 | m[20] << 22 | m[20] << 20 | m[22] << 18 | m[22] << 16 | m[24] << 14 | m[24] << 12 | m[25] << 10 | m[26] << 8 | m[27] << 6 | m[28] << 4 | m[29] << 2 | m[30] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK_3, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_M_16_30, reg); reg = m[ 0] << 30 | m[ 1] << 28 | m[ 2] << 26 | m[ 3] << 24 | m[ 4] << 22 | m[ 5] << 20 | m[ 6] << 18 | m[ 7] << 16 | m[ 8] << 14 | m[ 9] << 12 | m[10] << 10 | m[11] << 8 | m[12] << 6 | m[13] << 4 | m[14] << 2 | m[15] << 0; AR_WRITE(sc, AR_PHY_MASK_CTL, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_M_00_15, reg); reg = p[15] << 28 | p[14] << 26 | p[13] << 24 | p[12] << 22 | p[11] << 20 | p[10] << 18 | p[ 9] << 16 | p[ 8] << 14 | p[ 7] << 12 | p[ 6] << 10 | p[ 5] << 8 | p[ 4] << 6 | p[ 3] << 4 | p[ 2] << 2 | p[ 1] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK2_1, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_P_15_01, reg); reg = p[30] << 28 | p[29] << 26 | p[28] << 24 | p[27] << 22 | p[26] << 20 | p[25] << 18 | p[24] << 16 | p[23] << 14 | p[22] << 12 | p[21] << 10 | p[20] << 8 | p[19] << 6 | p[18] << 4 | p[17] << 2 | p[16] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK2_2, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_P_30_16, reg); reg = p[45] << 28 | p[44] << 26 | p[43] << 24 | p[42] << 22 | p[41] << 20 | p[40] << 18 | p[39] << 16 | p[38] << 14 | p[37] << 12 | p[36] << 10 | p[35] << 8 | p[34] << 6 | p[33] << 4 | p[32] << 2 | p[31] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK2_3, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_P_45_31, reg); reg = p[61] << 30 | p[60] << 28 | p[59] << 26 | p[58] << 24 | p[57] << 22 | p[56] << 20 | p[55] << 18 | p[54] << 16 | p[53] << 14 | p[52] << 12 | p[51] << 10 | p[50] << 8 | p[49] << 6 | p[48] << 4 | p[47] << 2 | p[46] << 0; AR_WRITE(sc, AR_PHY_BIN_MASK2_4, reg); AR_WRITE(sc, AR_PHY_VIT_MASK2_P_61_46, reg); AR_WRITE_BARRIER(sc); } void ar5008_hw_init(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { struct athn_ops *ops = &sc->ops; const struct athn_ini *ini = sc->ini; const uint32_t *pvals; uint32_t reg; int i; AR_WRITE(sc, AR_PHY(0), 0x00000007); AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); if (!AR_SINGLE_CHIP(sc)) ar5416_reset_addac(sc, c); AR_WRITE(sc, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); /* First initialization step (depends on channel band/bandwidth). */ if (extc != NULL) { if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = ini->vals_2g40; else pvals = ini->vals_5g40; } else { if (IEEE80211_IS_CHAN_2GHZ(c)) pvals = ini->vals_2g20; else pvals = ini->vals_5g20; } DPRINTFN(4, ("writing modal init vals\n")); for (i = 0; i < ini->nregs; i++) { uint32_t val = pvals[i]; /* Fix AR_AN_TOP2 initialization value if required. */ if (ini->regs[i] == AR_AN_TOP2 && (sc->flags & ATHN_FLAG_AN_TOP2_FIXUP)) val &= ~AR_AN_TOP2_PWDCLKIND; AR_WRITE(sc, ini->regs[i], val); if (AR_IS_ANALOG_REG(ini->regs[i])) { AR_WRITE_BARRIER(sc); DELAY(100); } if ((i & 0x1f) == 0) DELAY(1); } AR_WRITE_BARRIER(sc); if (sc->rx_gain != NULL) ar9280_reset_rx_gain(sc, c); if (sc->tx_gain != NULL) ar9280_reset_tx_gain(sc, c); if (AR_SREV_9271_10(sc)) { AR_WRITE(sc, AR_PHY(68), 0x30002311); AR_WRITE(sc, AR_PHY_RF_CTL3, 0x0a020001); } AR_WRITE_BARRIER(sc); /* Second initialization step (common to all channels). */ DPRINTFN(4, ("writing common init vals\n")); for (i = 0; i < ini->ncmregs; i++) { AR_WRITE(sc, ini->cmregs[i], ini->cmvals[i]); if (AR_IS_ANALOG_REG(ini->cmregs[i])) { AR_WRITE_BARRIER(sc); DELAY(100); } if ((i & 0x1f) == 0) DELAY(1); } AR_WRITE_BARRIER(sc); if (!AR_SINGLE_CHIP(sc)) ar5416_reset_bb_gain(sc, c); if (IEEE80211_IS_CHAN_5GHZ(c) && (sc->flags & ATHN_FLAG_FAST_PLL_CLOCK)) { /* Update modal values for fast PLL clock. */ if (extc != NULL) pvals = ini->fastvals_5g40; else pvals = ini->fastvals_5g20; DPRINTFN(4, ("writing fast pll clock init vals\n")); for (i = 0; i < ini->nfastregs; i++) { AR_WRITE(sc, ini->fastregs[i], pvals[i]); if (AR_IS_ANALOG_REG(ini->fastregs[i])) { AR_WRITE_BARRIER(sc); DELAY(100); } if ((i & 0x1f) == 0) DELAY(1); } } /* * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted * descriptor status. */ AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT); /* Hardware workarounds for occasional Rx data corruption. */ if (AR_SREV_9280_10_OR_LATER(sc)) { reg = AR_READ(sc, AR_PCU_MISC_MODE2); if (!AR_SREV_9271(sc)) reg &= ~AR_PCU_MISC_MODE2_HWWAR1; if (AR_SREV_9287_10_OR_LATER(sc)) reg &= ~AR_PCU_MISC_MODE2_HWWAR2; AR_WRITE(sc, AR_PCU_MISC_MODE2, reg); } else if (AR_SREV_5416_20_OR_LATER(sc)) { /* Disable baseband clock gating. */ AR_WRITE(sc, AR_PHY(651), 0x11); if (AR_SREV_9160(sc)) { /* Disable RIFS search to fix baseband hang. */ AR_CLRBITS(sc, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, AR_PHY_RIFS_INIT_DELAY_M); } } AR_WRITE_BARRIER(sc); ar5008_set_phy(sc, c, extc); ar5008_init_chains(sc); if (sc->flags & ATHN_FLAG_OLPC) { extern int ticks; sc->olpc_ticks = ticks; ops->olpc_init(sc); } ops->set_txpower(sc, c, extc); if (!AR_SINGLE_CHIP(sc)) ar5416_rf_reset(sc, c); } uint8_t ar5008_get_vpd(uint8_t pwr, const uint8_t *pwrPdg, const uint8_t *vpdPdg, int nicepts) { uint8_t vpd; int i, lo, hi; for (i = 0; i < nicepts; i++) if (pwrPdg[i] > pwr) break; hi = i; lo = hi - 1; if (lo == -1) lo = hi; else if (hi == nicepts) hi = lo; vpd = athn_interpolate(pwr, pwrPdg[lo], vpdPdg[lo], pwrPdg[hi], vpdPdg[hi]); return (vpd); } void ar5008_get_pdadcs(struct athn_softc *sc, uint8_t fbin, struct athn_pier *lopier, struct athn_pier *hipier, int nxpdgains, int nicepts, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) { #define DB(x) ((x) / 2) /* Convert half dB to dB. */ uint8_t minpwr[AR_PD_GAINS_IN_MASK], maxpwr[AR_PD_GAINS_IN_MASK]; uint8_t vpd[AR_MAX_PWR_RANGE_IN_HALF_DB], pwr; uint8_t lovpd, hivpd, boundary; int16_t ss, delta, vpdstep, val; int i, j, npdadcs, nvpds, maxidx, tgtidx; /* Compute min and max power in half dB for each pdGain. */ for (i = 0; i < nxpdgains; i++) { minpwr[i] = MAX(lopier->pwr[i][0], hipier->pwr[i][0]); maxpwr[i] = MIN(lopier->pwr[i][nicepts - 1], hipier->pwr[i][nicepts - 1]); } /* Fill phase domain analog-to-digital converter (PDADC) table. */ npdadcs = 0; for (i = 0; i < nxpdgains; i++) { if (i != nxpdgains - 1) boundaries[i] = DB(maxpwr[i] + minpwr[i + 1]) / 2; else boundaries[i] = DB(maxpwr[i]); if (boundaries[i] > AR_MAX_RATE_POWER) boundaries[i] = AR_MAX_RATE_POWER; if (i == 0 && !AR_SREV_5416_20_OR_LATER(sc)) { /* Fix the gain delta (AR5416 1.0 only). */ delta = boundaries[0] - 23; boundaries[0] = 23; } else delta = 0; /* Find starting index for this pdGain. */ if (i != 0) { ss = boundaries[i - 1] - DB(minpwr[i]) - overlap + 1 + delta; } else if (AR_SREV_9280_10_OR_LATER(sc)) { ss = -DB(minpwr[i]); } else ss = 0; /* Compute Vpd table for this pdGain. */ nvpds = DB(maxpwr[i] - minpwr[i]) + 1; memset(vpd, 0, sizeof(vpd)); pwr = minpwr[i]; for (j = 0; j < nvpds; j++) { /* Get lower and higher Vpd. */ lovpd = ar5008_get_vpd(pwr, lopier->pwr[i], lopier->vpd[i], nicepts); hivpd = ar5008_get_vpd(pwr, hipier->pwr[i], hipier->vpd[i], nicepts); /* Interpolate the final Vpd. */ vpd[j] = athn_interpolate(fbin, lopier->fbin, lovpd, hipier->fbin, hivpd); pwr += 2; /* In half dB. */ } /* Extrapolate data for ss < 0. */ if (vpd[1] > vpd[0]) vpdstep = vpd[1] - vpd[0]; else vpdstep = 1; while (ss < 0 && npdadcs < AR_NUM_PDADC_VALUES - 1) { val = vpd[0] + ss * vpdstep; pdadcs[npdadcs++] = MAX(val, 0); ss++; } tgtidx = boundaries[i] + overlap - DB(minpwr[i]); maxidx = MIN(tgtidx, nvpds); while (ss < maxidx && npdadcs < AR_NUM_PDADC_VALUES - 1) pdadcs[npdadcs++] = vpd[ss++]; if (tgtidx < maxidx) continue; /* Extrapolate data for maxidx <= ss <= tgtidx. */ if (vpd[nvpds - 1] > vpd[nvpds - 2]) vpdstep = vpd[nvpds - 1] - vpd[nvpds - 2]; else vpdstep = 1; while (ss <= tgtidx && npdadcs < AR_NUM_PDADC_VALUES - 1) { val = vpd[nvpds - 1] + (ss - maxidx + 1) * vpdstep; pdadcs[npdadcs++] = MIN(val, 255); ss++; } } /* Fill remaining PDADC and boundaries entries. */ if (AR_SREV_9285(sc)) boundary = AR9285_PD_GAIN_BOUNDARY_DEFAULT; else /* Fill with latest. */ boundary = boundaries[nxpdgains - 1]; for (; nxpdgains < AR_PD_GAINS_IN_MASK; nxpdgains++) boundaries[nxpdgains] = boundary; for (; npdadcs < AR_NUM_PDADC_VALUES; npdadcs++) pdadcs[npdadcs] = pdadcs[npdadcs - 1]; #undef DB } void ar5008_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c, uint8_t ctl, const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4]) { uint8_t fbin; int i, lo, hi; /* Find interval (lower and upper indices). */ fbin = athn_chan2fbin(c); for (i = 0; i < nchans; i++) { if (tgt[i].bChannel == AR_BCHAN_UNUSED || tgt[i].bChannel > fbin) break; } hi = i; lo = hi - 1; if (lo == -1) lo = hi; else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) hi = lo; /* Interpolate values. */ for (i = 0; i < 4; i++) { tpow[i] = athn_interpolate(fbin, tgt[lo].bChannel, tgt[lo].tPow2x[i], tgt[hi].bChannel, tgt[hi].tPow2x[i]); } /* XXX Apply conformance testing limit. */ } void ar5008_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c, uint8_t ctl, const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[8]) { uint8_t fbin; int i, lo, hi; /* Find interval (lower and upper indices). */ fbin = athn_chan2fbin(c); for (i = 0; i < nchans; i++) { if (tgt[i].bChannel == AR_BCHAN_UNUSED || tgt[i].bChannel > fbin) break; } hi = i; lo = hi - 1; if (lo == -1) lo = hi; else if (hi == nchans || tgt[hi].bChannel == AR_BCHAN_UNUSED) hi = lo; /* Interpolate values. */ for (i = 0; i < 8; i++) { tpow[i] = athn_interpolate(fbin, tgt[lo].bChannel, tgt[lo].tPow2x[i], tgt[hi].bChannel, tgt[hi].tPow2x[i]); } /* XXX Apply conformance testing limit. */ } /* * Adaptive noise immunity. */ void ar5008_set_noise_immunity_level(struct athn_softc *sc, int level) { int high = level == 4; uint32_t reg; reg = AR_READ(sc, AR_PHY_DESIRED_SZ); reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55); AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); reg = AR_READ(sc, AR_PHY_AGC_CTL1); reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_LOW, high ? -70 : -64); reg = RW(reg, AR_PHY_AGC_CTL1_COARSE_HIGH, high ? -12 : -14); AR_WRITE(sc, AR_PHY_AGC_CTL1, reg); reg = AR_READ(sc, AR_PHY_FIND_SIG); reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78); AR_WRITE(sc, AR_PHY_FIND_SIG, reg); AR_WRITE_BARRIER(sc); } void ar5008_enable_ofdm_weak_signal(struct athn_softc *sc) { uint32_t reg; reg = AR_READ(sc, AR_PHY_SFCORR_LOW); reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50); reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40); reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48); AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); reg = AR_READ(sc, AR_PHY_SFCORR); reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77); reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64); reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16); AR_WRITE(sc, AR_PHY_SFCORR, reg); reg = AR_READ(sc, AR_PHY_SFCORR_EXT); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64); AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); AR_SETBITS(sc, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); AR_WRITE_BARRIER(sc); } void ar5008_disable_ofdm_weak_signal(struct athn_softc *sc) { uint32_t reg; reg = AR_READ(sc, AR_PHY_SFCORR_LOW); reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63); AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg); reg = AR_READ(sc, AR_PHY_SFCORR); reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127); reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127); reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31); AR_WRITE(sc, AR_PHY_SFCORR, reg); reg = AR_READ(sc, AR_PHY_SFCORR_EXT); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127); reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127); reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127); AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg); AR_CLRBITS(sc, AR_PHY_SFCORR_LOW, AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW); AR_WRITE_BARRIER(sc); } void ar5008_set_cck_weak_signal(struct athn_softc *sc, int high) { uint32_t reg; reg = AR_READ(sc, AR_PHY_CCK_DETECT); reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8); AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); AR_WRITE_BARRIER(sc); } void ar5008_set_firstep_level(struct athn_softc *sc, int level) { uint32_t reg; reg = AR_READ(sc, AR_PHY_FIND_SIG); reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4); AR_WRITE(sc, AR_PHY_FIND_SIG, reg); AR_WRITE_BARRIER(sc); } void ar5008_set_spur_immunity_level(struct athn_softc *sc, int level) { uint32_t reg; reg = AR_READ(sc, AR_PHY_TIMING5); reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2); AR_WRITE(sc, AR_PHY_TIMING5, reg); AR_WRITE_BARRIER(sc); }