/* $OpenBSD: bcmgenet.c,v 1.7 2023/11/10 15:51:20 bluhm Exp $ */ /* $NetBSD: bcmgenet.c,v 1.3 2020/02/27 17:30:07 jmcneill Exp $ */ /*- * Copyright (c) 2020 Jared McNeill * Copyright (c) 2020 Mark Kettenis * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Broadcom GENETv5 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CTASSERT(MCLBYTES == 2048); #ifdef GENET_DEBUG #define DPRINTF(...) printf(##__VA_ARGS__) #else #define DPRINTF(...) ((void)0) #endif #define TX_SKIP(n, o) (((n) + (o)) & (GENET_DMA_DESC_COUNT - 1)) #define TX_NEXT(n) TX_SKIP(n, 1) #define RX_NEXT(n) (((n) + 1) & (GENET_DMA_DESC_COUNT - 1)) #define TX_MAX_SEGS 128 #define TX_DESC_COUNT GENET_DMA_DESC_COUNT #define RX_DESC_COUNT GENET_DMA_DESC_COUNT #define MII_BUSY_RETRY 1000 #define GENET_MAX_MDF_FILTER 17 #define RD4(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define WR4(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) struct cfdriver bse_cd = { 0, "bse", DV_IFNET }; int genet_media_change(struct ifnet *ifp) { struct genet_softc *sc = ifp->if_softc; if (LIST_FIRST(&sc->sc_mii.mii_phys)) mii_mediachg(&sc->sc_mii); return (0); } void genet_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct genet_softc *sc = ifp->if_softc; if (LIST_FIRST(&sc->sc_mii.mii_phys)) { mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } } int genet_mii_readreg(struct device *dev, int phy, int reg) { struct genet_softc *sc = (struct genet_softc *)dev; int retry; WR4(sc, GENET_MDIO_CMD, GENET_MDIO_READ | GENET_MDIO_START_BUSY | __SHIFTIN(phy, GENET_MDIO_PMD) | __SHIFTIN(reg, GENET_MDIO_REG)); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { if ((RD4(sc, GENET_MDIO_CMD) & GENET_MDIO_START_BUSY) == 0) return RD4(sc, GENET_MDIO_CMD) & 0xffff; delay(10); } printf("%s: phy read timeout, phy=%d reg=%d\n", sc->sc_dev.dv_xname, phy, reg); return 0; } void genet_mii_writereg(struct device *dev, int phy, int reg, int val) { struct genet_softc *sc = (struct genet_softc *)dev; int retry; WR4(sc, GENET_MDIO_CMD, val | GENET_MDIO_WRITE | GENET_MDIO_START_BUSY | __SHIFTIN(phy, GENET_MDIO_PMD) | __SHIFTIN(reg, GENET_MDIO_REG)); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { if ((RD4(sc, GENET_MDIO_CMD) & GENET_MDIO_START_BUSY) == 0) return; delay(10); } printf("%s: phy write timeout, phy=%d reg=%d\n", sc->sc_dev.dv_xname, phy, reg); } void genet_update_link(struct genet_softc *sc) { struct mii_data *mii = &sc->sc_mii; uint32_t val; u_int speed; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) speed = GENET_UMAC_CMD_SPEED_1000; else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) speed = GENET_UMAC_CMD_SPEED_100; else speed = GENET_UMAC_CMD_SPEED_10; val = RD4(sc, GENET_EXT_RGMII_OOB_CTRL); val &= ~GENET_EXT_RGMII_OOB_OOB_DISABLE; val |= GENET_EXT_RGMII_OOB_RGMII_LINK; val |= GENET_EXT_RGMII_OOB_RGMII_MODE_EN; if (sc->sc_phy_mode == GENET_PHY_MODE_RGMII) val |= GENET_EXT_RGMII_OOB_ID_MODE_DISABLE; else val &= ~GENET_EXT_RGMII_OOB_ID_MODE_DISABLE; WR4(sc, GENET_EXT_RGMII_OOB_CTRL, val); val = RD4(sc, GENET_UMAC_CMD); val &= ~GENET_UMAC_CMD_SPEED; val |= __SHIFTIN(speed, GENET_UMAC_CMD_SPEED); WR4(sc, GENET_UMAC_CMD, val); } void genet_mii_statchg(struct device *self) { struct genet_softc *sc = (struct genet_softc *)self; genet_update_link(sc); } void genet_setup_txdesc(struct genet_softc *sc, int index, int flags, bus_addr_t paddr, u_int len) { uint32_t status; status = flags | __SHIFTIN(len, GENET_TX_DESC_STATUS_BUFLEN); ++sc->sc_tx.queued; WR4(sc, GENET_TX_DESC_ADDRESS_LO(index), (uint32_t)paddr); WR4(sc, GENET_TX_DESC_ADDRESS_HI(index), (uint32_t)(paddr >> 32)); WR4(sc, GENET_TX_DESC_STATUS(index), status); } int genet_setup_txbuf(struct genet_softc *sc, int index, struct mbuf *m) { bus_dma_segment_t *segs; int error, nsegs, cur, i; uint32_t flags; /* * XXX Hardware doesn't seem to like small fragments. For now * just look at the first fragment and defrag if it is smaller * than the minimum Ethernet packet size. */ if (m->m_len < ETHER_MIN_LEN - ETHER_CRC_LEN) { if (m_defrag(m, M_DONTWAIT)) return 0; } error = bus_dmamap_load_mbuf(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error == EFBIG) { if (m_defrag(m, M_DONTWAIT)) return 0; error = bus_dmamap_load_mbuf(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); } if (error != 0) return 0; segs = sc->sc_tx.buf_map[index].map->dm_segs; nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs; if (sc->sc_tx.queued >= GENET_DMA_DESC_COUNT - nsegs) { bus_dmamap_unload(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map); return -1; } flags = GENET_TX_DESC_STATUS_SOP | GENET_TX_DESC_STATUS_CRC | GENET_TX_DESC_STATUS_QTAG; for (cur = index, i = 0; i < nsegs; i++) { sc->sc_tx.buf_map[cur].mbuf = (i == 0 ? m : NULL); if (i == nsegs - 1) flags |= GENET_TX_DESC_STATUS_EOP; genet_setup_txdesc(sc, cur, flags, segs[i].ds_addr, segs[i].ds_len); if (i == 0) { flags &= ~GENET_TX_DESC_STATUS_SOP; flags &= ~GENET_TX_DESC_STATUS_CRC; } cur = TX_NEXT(cur); } bus_dmamap_sync(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map, 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE); return nsegs; } void genet_setup_rxdesc(struct genet_softc *sc, int index, bus_addr_t paddr, bus_size_t len) { WR4(sc, GENET_RX_DESC_ADDRESS_LO(index), (uint32_t)paddr); WR4(sc, GENET_RX_DESC_ADDRESS_HI(index), (uint32_t)(paddr >> 32)); } int genet_setup_rxbuf(struct genet_softc *sc, int index, struct mbuf *m) { int error; error = bus_dmamap_load_mbuf(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) return error; bus_dmamap_sync(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map, 0, sc->sc_rx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREREAD); sc->sc_rx.buf_map[index].mbuf = m; genet_setup_rxdesc(sc, index, sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr, sc->sc_rx.buf_map[index].map->dm_segs[0].ds_len); return 0; } struct mbuf * genet_alloc_mbufcl(struct genet_softc *sc) { struct mbuf *m; m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES); if (m != NULL) m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return m; } void genet_fill_rx_ring(struct genet_softc *sc, int qid) { struct mbuf *m; uint32_t cidx, index, total; u_int slots; int error; cidx = sc->sc_rx.cidx; total = (sc->sc_rx.pidx - cidx) & 0xffff; KASSERT(total <= RX_DESC_COUNT); index = sc->sc_rx.cidx & (RX_DESC_COUNT - 1); for (slots = if_rxr_get(&sc->sc_rx_ring, total); slots > 0; slots--) { if ((m = genet_alloc_mbufcl(sc)) == NULL) { printf("%s: cannot allocate RX mbuf\n", sc->sc_dev.dv_xname); break; } error = genet_setup_rxbuf(sc, index, m); if (error != 0) { printf("%s: cannot create RX buffer\n", sc->sc_dev.dv_xname); m_freem(m); break; } cidx = (cidx + 1) & 0xffff; index = RX_NEXT(index); } if_rxr_put(&sc->sc_rx_ring, slots); if (sc->sc_rx.cidx != cidx) { sc->sc_rx.cidx = cidx; WR4(sc, GENET_RX_DMA_CONS_INDEX(qid), sc->sc_rx.cidx); } if (if_rxr_inuse(&sc->sc_rx_ring) == 0) timeout_add(&sc->sc_rxto, 1); } void genet_rxtick(void *arg) { genet_fill_rx_ring(arg, GENET_DMA_DEFAULT_QUEUE); } void genet_enable_intr(struct genet_softc *sc) { WR4(sc, GENET_INTRL2_CPU_CLEAR_MASK, GENET_IRQ_TXDMA_DONE | GENET_IRQ_RXDMA_DONE); } void genet_disable_intr(struct genet_softc *sc) { /* Disable interrupts */ WR4(sc, GENET_INTRL2_CPU_SET_MASK, 0xffffffff); WR4(sc, GENET_INTRL2_CPU_CLEAR, 0xffffffff); } void genet_tick(void *softc) { struct genet_softc *sc = softc; struct mii_data *mii = &sc->sc_mii; int s = splnet(); mii_tick(mii); timeout_add_sec(&sc->sc_stat_ch, 1); splx(s); } void genet_setup_rxfilter_mdf(struct genet_softc *sc, u_int n, const uint8_t *ea) { uint32_t addr0 = (ea[0] << 8) | ea[1]; uint32_t addr1 = (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5]; WR4(sc, GENET_UMAC_MDF_ADDR0(n), addr0); WR4(sc, GENET_UMAC_MDF_ADDR1(n), addr1); } void genet_setup_rxfilter(struct genet_softc *sc) { struct arpcom *ac = &sc->sc_ac; struct ifnet *ifp = &ac->ac_if; struct ether_multistep step; struct ether_multi *enm; uint32_t cmd, mdf_ctrl; u_int n; cmd = RD4(sc, GENET_UMAC_CMD); /* * Count the required number of hardware filters. We need one * for each multicast address, plus one for our own address and * the broadcast address. */ ETHER_FIRST_MULTI(step, ac, enm); for (n = 2; enm != NULL; n++) ETHER_NEXT_MULTI(step, enm); if (n > GENET_MAX_MDF_FILTER || ac->ac_multirangecnt > 0) ifp->if_flags |= IFF_ALLMULTI; else ifp->if_flags &= ~IFF_ALLMULTI; if ((ifp->if_flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0) { cmd |= GENET_UMAC_CMD_PROMISC; mdf_ctrl = 0; } else { cmd &= ~GENET_UMAC_CMD_PROMISC; genet_setup_rxfilter_mdf(sc, 0, etherbroadcastaddr); genet_setup_rxfilter_mdf(sc, 1, LLADDR(ifp->if_sadl)); ETHER_FIRST_MULTI(step, ac, enm); for (n = 2; enm != NULL; n++) { genet_setup_rxfilter_mdf(sc, n, enm->enm_addrlo); ETHER_NEXT_MULTI(step, enm); } mdf_ctrl = __BITS(GENET_MAX_MDF_FILTER - 1, GENET_MAX_MDF_FILTER - n); } WR4(sc, GENET_UMAC_CMD, cmd); WR4(sc, GENET_UMAC_MDF_CTRL, mdf_ctrl); } void genet_disable_dma(struct genet_softc *sc) { uint32_t val; /* Disable receiver */ val = RD4(sc, GENET_UMAC_CMD); val &= ~GENET_UMAC_CMD_RXEN; WR4(sc, GENET_UMAC_CMD, val); /* Stop receive DMA */ val = RD4(sc, GENET_RX_DMA_CTRL); val &= ~GENET_RX_DMA_CTRL_EN; val &= ~GENET_RX_DMA_CTRL_RBUF_EN(GENET_DMA_DEFAULT_QUEUE); WR4(sc, GENET_RX_DMA_CTRL, val); /* Stop transmit DMA */ val = RD4(sc, GENET_TX_DMA_CTRL); val &= ~GENET_TX_DMA_CTRL_EN; val &= ~GENET_TX_DMA_CTRL_RBUF_EN(GENET_DMA_DEFAULT_QUEUE); WR4(sc, GENET_TX_DMA_CTRL, val); /* Flush data in the TX FIFO */ WR4(sc, GENET_UMAC_TX_FLUSH, 1); delay(10); WR4(sc, GENET_UMAC_TX_FLUSH, 0); /* Disable transmitter */ val = RD4(sc, GENET_UMAC_CMD); val &= ~GENET_UMAC_CMD_TXEN; WR4(sc, GENET_UMAC_CMD, val); } int genet_reset(struct genet_softc *sc) { uint32_t val; genet_disable_dma(sc); val = RD4(sc, GENET_SYS_RBUF_FLUSH_CTRL); val |= GENET_SYS_RBUF_FLUSH_RESET; WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, val); delay(10); val &= ~GENET_SYS_RBUF_FLUSH_RESET; WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, val); delay(10); WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, 0); delay(10); WR4(sc, GENET_UMAC_CMD, 0); WR4(sc, GENET_UMAC_CMD, GENET_UMAC_CMD_LCL_LOOP_EN | GENET_UMAC_CMD_SW_RESET); delay(10); WR4(sc, GENET_UMAC_CMD, 0); WR4(sc, GENET_UMAC_MIB_CTRL, GENET_UMAC_MIB_RESET_RUNT | GENET_UMAC_MIB_RESET_RX | GENET_UMAC_MIB_RESET_TX); WR4(sc, GENET_UMAC_MIB_CTRL, 0); WR4(sc, GENET_UMAC_MAX_FRAME_LEN, 1536); val = RD4(sc, GENET_RBUF_CTRL); val |= GENET_RBUF_ALIGN_2B; WR4(sc, GENET_RBUF_CTRL, val); WR4(sc, GENET_RBUF_TBUF_SIZE_CTRL, 1); return 0; } void genet_init_rings(struct genet_softc *sc, int qid) { uint32_t val; /* TX ring */ sc->sc_tx.next = 0; sc->sc_tx.queued = 0; sc->sc_tx.cidx = sc->sc_tx.pidx = 0; WR4(sc, GENET_TX_SCB_BURST_SIZE, 0x08); WR4(sc, GENET_TX_DMA_READ_PTR_LO(qid), 0); WR4(sc, GENET_TX_DMA_READ_PTR_HI(qid), 0); WR4(sc, GENET_TX_DMA_CONS_INDEX(qid), sc->sc_tx.cidx); WR4(sc, GENET_TX_DMA_PROD_INDEX(qid), sc->sc_tx.pidx); WR4(sc, GENET_TX_DMA_RING_BUF_SIZE(qid), __SHIFTIN(TX_DESC_COUNT, GENET_TX_DMA_RING_BUF_SIZE_DESC_COUNT) | __SHIFTIN(MCLBYTES, GENET_TX_DMA_RING_BUF_SIZE_BUF_LENGTH)); WR4(sc, GENET_TX_DMA_START_ADDR_LO(qid), 0); WR4(sc, GENET_TX_DMA_START_ADDR_HI(qid), 0); WR4(sc, GENET_TX_DMA_END_ADDR_LO(qid), TX_DESC_COUNT * GENET_DMA_DESC_SIZE / 4 - 1); WR4(sc, GENET_TX_DMA_END_ADDR_HI(qid), 0); WR4(sc, GENET_TX_DMA_MBUF_DONE_THRES(qid), 1); WR4(sc, GENET_TX_DMA_FLOW_PERIOD(qid), 0); WR4(sc, GENET_TX_DMA_WRITE_PTR_LO(qid), 0); WR4(sc, GENET_TX_DMA_WRITE_PTR_HI(qid), 0); WR4(sc, GENET_TX_DMA_RING_CFG, __BIT(qid)); /* enable */ /* Enable transmit DMA */ val = RD4(sc, GENET_TX_DMA_CTRL); val |= GENET_TX_DMA_CTRL_EN; val |= GENET_TX_DMA_CTRL_RBUF_EN(qid); WR4(sc, GENET_TX_DMA_CTRL, val); /* RX ring */ sc->sc_rx.next = 0; sc->sc_rx.cidx = 0; sc->sc_rx.pidx = RX_DESC_COUNT; WR4(sc, GENET_RX_SCB_BURST_SIZE, 0x08); WR4(sc, GENET_RX_DMA_WRITE_PTR_LO(qid), 0); WR4(sc, GENET_RX_DMA_WRITE_PTR_HI(qid), 0); WR4(sc, GENET_RX_DMA_PROD_INDEX(qid), sc->sc_rx.pidx); WR4(sc, GENET_RX_DMA_CONS_INDEX(qid), sc->sc_rx.cidx); WR4(sc, GENET_RX_DMA_RING_BUF_SIZE(qid), __SHIFTIN(RX_DESC_COUNT, GENET_RX_DMA_RING_BUF_SIZE_DESC_COUNT) | __SHIFTIN(MCLBYTES, GENET_RX_DMA_RING_BUF_SIZE_BUF_LENGTH)); WR4(sc, GENET_RX_DMA_START_ADDR_LO(qid), 0); WR4(sc, GENET_RX_DMA_START_ADDR_HI(qid), 0); WR4(sc, GENET_RX_DMA_END_ADDR_LO(qid), RX_DESC_COUNT * GENET_DMA_DESC_SIZE / 4 - 1); WR4(sc, GENET_RX_DMA_END_ADDR_HI(qid), 0); WR4(sc, GENET_RX_DMA_XON_XOFF_THRES(qid), __SHIFTIN(5, GENET_RX_DMA_XON_XOFF_THRES_LO) | __SHIFTIN(RX_DESC_COUNT >> 4, GENET_RX_DMA_XON_XOFF_THRES_HI)); WR4(sc, GENET_RX_DMA_READ_PTR_LO(qid), 0); WR4(sc, GENET_RX_DMA_READ_PTR_HI(qid), 0); WR4(sc, GENET_RX_DMA_RING_CFG, __BIT(qid)); /* enable */ if_rxr_init(&sc->sc_rx_ring, 2, RX_DESC_COUNT); genet_fill_rx_ring(sc, qid); /* Enable receive DMA */ val = RD4(sc, GENET_RX_DMA_CTRL); val |= GENET_RX_DMA_CTRL_EN; val |= GENET_RX_DMA_CTRL_RBUF_EN(qid); WR4(sc, GENET_RX_DMA_CTRL, val); } int genet_init(struct genet_softc *sc) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct mii_data *mii = &sc->sc_mii; uint32_t val; uint8_t *enaddr = LLADDR(ifp->if_sadl); if (ifp->if_flags & IFF_RUNNING) return 0; if (sc->sc_phy_mode == GENET_PHY_MODE_RGMII || sc->sc_phy_mode == GENET_PHY_MODE_RGMII_ID || sc->sc_phy_mode == GENET_PHY_MODE_RGMII_RXID || sc->sc_phy_mode == GENET_PHY_MODE_RGMII_TXID) WR4(sc, GENET_SYS_PORT_CTRL, GENET_SYS_PORT_MODE_EXT_GPHY); /* Write hardware address */ val = enaddr[3] | (enaddr[2] << 8) | (enaddr[1] << 16) | (enaddr[0] << 24); WR4(sc, GENET_UMAC_MAC0, val); val = enaddr[5] | (enaddr[4] << 8); WR4(sc, GENET_UMAC_MAC1, val); /* Setup RX filter */ genet_setup_rxfilter(sc); /* Setup TX/RX rings */ genet_init_rings(sc, GENET_DMA_DEFAULT_QUEUE); /* Enable transmitter and receiver */ val = RD4(sc, GENET_UMAC_CMD); val |= GENET_UMAC_CMD_TXEN; val |= GENET_UMAC_CMD_RXEN; WR4(sc, GENET_UMAC_CMD, val); /* Enable interrupts */ genet_enable_intr(sc); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); mii_mediachg(mii); timeout_add_sec(&sc->sc_stat_ch, 1); return 0; } void genet_stop(struct genet_softc *sc) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct genet_bufmap *bmap; int i; timeout_del(&sc->sc_rxto); timeout_del(&sc->sc_stat_ch); mii_down(&sc->sc_mii); genet_disable_dma(sc); /* Disable interrupts */ genet_disable_intr(sc); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); ifp->if_timer = 0; intr_barrier(sc->sc_ih); /* Clean RX ring. */ for (i = 0; i < RX_DESC_COUNT; i++) { bmap = &sc->sc_rx.buf_map[i]; if (bmap->mbuf) { bus_dmamap_sync(sc->sc_dmat, bmap->map, 0, bmap->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } } /* Clean TX ring. */ for (i = 0; i < TX_DESC_COUNT; i++) { bmap = &sc->sc_tx.buf_map[i]; if (bmap->mbuf) { bus_dmamap_sync(sc->sc_dmat, bmap->map, 0, bmap->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } } } void genet_rxintr(struct genet_softc *sc, int qid) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct mbuf *m; int index, len, n; uint32_t status, pidx, total; pidx = RD4(sc, GENET_RX_DMA_PROD_INDEX(qid)) & 0xffff; total = (pidx - sc->sc_rx.pidx) & 0xffff; DPRINTF("RX pidx=%08x total=%d\n", pidx, total); index = sc->sc_rx.next; for (n = 0; n < total; n++) { status = RD4(sc, GENET_RX_DESC_STATUS(index)); len = __SHIFTOUT(status, GENET_RX_DESC_STATUS_BUFLEN); /* XXX check for errors */ bus_dmamap_sync(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map, 0, sc->sc_rx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map); DPRINTF("RX [#%d] index=%02x status=%08x len=%d adj_len=%d\n", n, index, status, len, len - ETHER_ALIGN); m = sc->sc_rx.buf_map[index].mbuf; sc->sc_rx.buf_map[index].mbuf = NULL; if (len > ETHER_ALIGN) { m_adj(m, ETHER_ALIGN); m->m_len = m->m_pkthdr.len = len - ETHER_ALIGN; m->m_nextpkt = NULL; ml_enqueue(&ml, m); } else { ifp->if_ierrors++; m_freem(m); } if_rxr_put(&sc->sc_rx_ring, 1); index = RX_NEXT(index); } if (sc->sc_rx.pidx != pidx) { sc->sc_rx.next = index; sc->sc_rx.pidx = pidx; if (ifiq_input(&ifp->if_rcv, &ml)) if_rxr_livelocked(&sc->sc_rx_ring); genet_fill_rx_ring(sc, qid); } } void genet_txintr(struct genet_softc *sc, int qid) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct genet_bufmap *bmap; uint32_t cidx, total; int i; cidx = RD4(sc, GENET_TX_DMA_CONS_INDEX(qid)) & 0xffff; total = (cidx - sc->sc_tx.cidx) & 0xffff; for (i = sc->sc_tx.next; sc->sc_tx.queued > 0 && total > 0; i = TX_NEXT(i), total--) { /* XXX check for errors */ bmap = &sc->sc_tx.buf_map[i]; if (bmap->mbuf != NULL) { bus_dmamap_sync(sc->sc_tx.buf_tag, bmap->map, 0, bmap->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tx.buf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } --sc->sc_tx.queued; } if (sc->sc_tx.queued == 0) ifp->if_timer = 0; if (sc->sc_tx.cidx != cidx) { sc->sc_tx.next = i; sc->sc_tx.cidx = cidx; if (ifq_is_oactive(&ifp->if_snd)) ifq_restart(&ifp->if_snd); } } void genet_start(struct ifnet *ifp) { struct genet_softc *sc = ifp->if_softc; struct mbuf *m; const int qid = GENET_DMA_DEFAULT_QUEUE; int nsegs, index, cnt; if ((ifp->if_flags & IFF_RUNNING) == 0) return; if (ifq_is_oactive(&ifp->if_snd)) return; index = sc->sc_tx.pidx & (TX_DESC_COUNT - 1); cnt = 0; for (;;) { m = ifq_deq_begin(&ifp->if_snd); if (m == NULL) break; nsegs = genet_setup_txbuf(sc, index, m); if (nsegs == -1) { ifq_deq_rollback(&ifp->if_snd, m); ifq_set_oactive(&ifp->if_snd); break; } if (nsegs == 0) { ifq_deq_commit(&ifp->if_snd, m); m_freem(m); ifp->if_oerrors++; continue; } ifq_deq_commit(&ifp->if_snd, m); if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); index = TX_SKIP(index, nsegs); sc->sc_tx.pidx = (sc->sc_tx.pidx + nsegs) & 0xffff; cnt++; } if (cnt != 0) { WR4(sc, GENET_TX_DMA_PROD_INDEX(qid), sc->sc_tx.pidx); ifp->if_timer = 5; } } int genet_intr(void *arg) { struct genet_softc *sc = arg; struct ifnet *ifp = &sc->sc_ac.ac_if; uint32_t val; val = RD4(sc, GENET_INTRL2_CPU_STAT); val &= ~RD4(sc, GENET_INTRL2_CPU_STAT_MASK); WR4(sc, GENET_INTRL2_CPU_CLEAR, val); if (val & GENET_IRQ_RXDMA_DONE) genet_rxintr(sc, GENET_DMA_DEFAULT_QUEUE); if (val & GENET_IRQ_TXDMA_DONE) { genet_txintr(sc, GENET_DMA_DEFAULT_QUEUE); if (ifq_is_oactive(&ifp->if_snd)) ifq_restart(&ifp->if_snd); } return 1; } int genet_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr) { struct genet_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)addr; int error = 0, s; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else genet_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) genet_stop(sc); } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; case SIOCGIFRXR: error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data, NULL, MCLBYTES, &sc->sc_rx_ring); break; default: error = ether_ioctl(ifp, &sc->sc_ac, cmd, addr); break; } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) genet_setup_rxfilter(sc); error = 0; } splx(s); return error; } int genet_setup_dma(struct genet_softc *sc, int qid) { int error, i; /* Setup TX ring */ sc->sc_tx.buf_tag = sc->sc_dmat; for (i = 0; i < TX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->sc_tx.buf_tag, MCLBYTES, TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK, &sc->sc_tx.buf_map[i].map); if (error != 0) { printf("%s: cannot create TX buffer map\n", sc->sc_dev.dv_xname); return error; } } /* Setup RX ring */ sc->sc_rx.buf_tag = sc->sc_dmat; for (i = 0; i < RX_DESC_COUNT; i++) { error = bus_dmamap_create(sc->sc_rx.buf_tag, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_WAITOK, &sc->sc_rx.buf_map[i].map); if (error != 0) { printf("%s: cannot create RX buffer map\n", sc->sc_dev.dv_xname); return error; } } return 0; } int genet_attach(struct genet_softc *sc) { struct mii_data *mii = &sc->sc_mii; struct ifnet *ifp = &sc->sc_ac.ac_if; int mii_flags = 0; switch (sc->sc_phy_mode) { case GENET_PHY_MODE_RGMII_ID: mii_flags |= MIIF_RXID | MIIF_TXID; break; case GENET_PHY_MODE_RGMII_RXID: mii_flags |= MIIF_RXID; break; case GENET_PHY_MODE_RGMII_TXID: mii_flags |= MIIF_TXID; break; case GENET_PHY_MODE_RGMII: default: break; } printf(": address %s\n", ether_sprintf(sc->sc_lladdr)); /* Soft reset EMAC core */ genet_reset(sc); /* Setup DMA descriptors */ if (genet_setup_dma(sc, GENET_DMA_DEFAULT_QUEUE) != 0) { printf("%s: failed to setup DMA descriptors\n", sc->sc_dev.dv_xname); return EINVAL; } timeout_set(&sc->sc_stat_ch, genet_tick, sc); timeout_set(&sc->sc_rxto, genet_rxtick, sc); /* Setup ethernet interface */ ifp->if_softc = sc; snprintf(ifp->if_xname, IFNAMSIZ, "%s", sc->sc_dev.dv_xname); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = genet_start; ifp->if_ioctl = genet_ioctl; ifq_init_maxlen(&ifp->if_snd, IFQ_MAXLEN); /* 802.1Q VLAN-sized frames are supported */ ifp->if_capabilities = IFCAP_VLAN_MTU; /* Attach MII driver */ ifmedia_init(&mii->mii_media, 0, genet_media_change, genet_media_status); mii->mii_ifp = ifp; mii->mii_readreg = genet_mii_readreg; mii->mii_writereg = genet_mii_writereg; mii->mii_statchg = genet_mii_statchg; mii_attach(&sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY, mii_flags); if (LIST_EMPTY(&mii->mii_phys)) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_MANUAL); } ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* Attach interface */ if_attach(ifp); /* Attach ethernet interface */ ether_ifattach(ifp); return 0; } void genet_lladdr_read(struct genet_softc *sc, uint8_t *lladdr) { uint32_t maclo, machi; maclo = RD4(sc, GENET_UMAC_MAC0); machi = RD4(sc, GENET_UMAC_MAC1); lladdr[0] = (maclo >> 24) & 0xff; lladdr[1] = (maclo >> 16) & 0xff; lladdr[2] = (maclo >> 8) & 0xff; lladdr[3] = (maclo >> 0) & 0xff; lladdr[4] = (machi >> 8) & 0xff; lladdr[5] = (machi >> 0) & 0xff; }