/* $OpenBSD: ipmi.c,v 1.119 2024/04/03 18:32:47 gkoehler Exp $ */ /* * Copyright (c) 2015 Masao Uebayashi * Copyright (c) 2005 Jordan Hargrave * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ipmi_sensor { u_int8_t *i_sdr; int i_num; int stype; int etype; struct ksensor i_sensor; SLIST_ENTRY(ipmi_sensor) list; }; int ipmi_enabled = 0; #define SENSOR_REFRESH_RATE 5 /* seconds */ #define DEVNAME(s) ((s)->sc_dev.dv_xname) #define IPMI_BTMSG_LEN 0 #define IPMI_BTMSG_NFLN 1 #define IPMI_BTMSG_SEQ 2 #define IPMI_BTMSG_CMD 3 #define IPMI_BTMSG_CCODE 4 #define IPMI_BTMSG_DATASND 4 #define IPMI_BTMSG_DATARCV 5 /* IPMI 2.0, Table 42-3: Sensor Type Codes */ #define IPMI_SENSOR_TYPE_TEMP 0x0101 #define IPMI_SENSOR_TYPE_VOLT 0x0102 #define IPMI_SENSOR_TYPE_CURRENT 0x0103 #define IPMI_SENSOR_TYPE_FAN 0x0104 #define IPMI_SENSOR_TYPE_INTRUSION 0x6F05 #define IPMI_SENSOR_TYPE_PWRSUPPLY 0x6F08 /* IPMI 2.0, Table 43-15: Sensor Unit Type Codes */ #define IPMI_UNIT_TYPE_DEGREE_C 1 #define IPMI_UNIT_TYPE_DEGREE_F 2 #define IPMI_UNIT_TYPE_DEGREE_K 3 #define IPMI_UNIT_TYPE_VOLTS 4 #define IPMI_UNIT_TYPE_AMPS 5 #define IPMI_UNIT_TYPE_WATTS 6 #define IPMI_UNIT_TYPE_RPM 18 #define IPMI_NAME_UNICODE 0x00 #define IPMI_NAME_BCDPLUS 0x01 #define IPMI_NAME_ASCII6BIT 0x02 #define IPMI_NAME_ASCII8BIT 0x03 #define IPMI_ENTITY_PWRSUPPLY 0x0A #define IPMI_INVALID_SENSOR (1L << 5) #define IPMI_DISABLED_SENSOR (1L << 6) #define IPMI_SDR_TYPEFULL 1 #define IPMI_SDR_TYPECOMPACT 2 #define byteof(x) ((x) >> 3) #define bitof(x) (1L << ((x) & 0x7)) #define TB(b,m) (data[2+byteof(b)] & bitof(b)) #ifdef IPMI_DEBUG int ipmi_dbg = 0; #define dbg_printf(lvl, fmt...) \ if (ipmi_dbg >= lvl) \ printf(fmt); #define dbg_dump(lvl, msg, len, buf) \ if (len && ipmi_dbg >= lvl) \ dumpb(msg, len, (const u_int8_t *)(buf)); #else #define dbg_printf(lvl, fmt...) #define dbg_dump(lvl, msg, len, buf) #endif long signextend(unsigned long, int); SLIST_HEAD(ipmi_sensors_head, ipmi_sensor); struct ipmi_sensors_head ipmi_sensor_list = SLIST_HEAD_INITIALIZER(ipmi_sensor_list); void dumpb(const char *, int, const u_int8_t *); int read_sensor(struct ipmi_softc *, struct ipmi_sensor *); int add_sdr_sensor(struct ipmi_softc *, u_int8_t *, int); int get_sdr_partial(struct ipmi_softc *, u_int16_t, u_int16_t, u_int8_t, u_int8_t, void *, u_int16_t *); int get_sdr(struct ipmi_softc *, u_int16_t, u_int16_t *); int ipmi_sendcmd(struct ipmi_cmd *); int ipmi_recvcmd(struct ipmi_cmd *); void ipmi_cmd(struct ipmi_cmd *); void ipmi_cmd_poll(struct ipmi_cmd *); void ipmi_cmd_wait(struct ipmi_cmd *); void ipmi_cmd_wait_cb(void *); int ipmi_watchdog(void *, int); void ipmi_watchdog_tickle(void *); void ipmi_watchdog_set(void *); struct ipmi_softc *ipmilookup(dev_t dev); int ipmiopen(dev_t, int, int, struct proc *); int ipmiclose(dev_t, int, int, struct proc *); int ipmiioctl(dev_t, u_long, caddr_t, int, struct proc *); long ipow(long, int); long ipmi_convert(u_int8_t, struct sdrtype1 *, long); int ipmi_sensor_name(char *, int, u_int8_t, u_int8_t *, int); /* BMC Helper Functions */ u_int8_t bmc_read(struct ipmi_softc *, int); void bmc_write(struct ipmi_softc *, int, u_int8_t); int bmc_io_wait(struct ipmi_softc *, struct ipmi_iowait *); void bt_buildmsg(struct ipmi_cmd *); void cmn_buildmsg(struct ipmi_cmd *); int getbits(u_int8_t *, int, int); int ipmi_sensor_type(int, int, int, int); void ipmi_refresh_sensors(struct ipmi_softc *sc); int ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia); void ipmi_unmap_regs(struct ipmi_softc *); int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *, u_int8_t *); int add_child_sensors(struct ipmi_softc *, u_int8_t *, int, int, int, int, int, int, const char *); void ipmi_create_thread(void *); void ipmi_poll_thread(void *); int kcs_probe(struct ipmi_softc *); int kcs_reset(struct ipmi_softc *); int kcs_sendmsg(struct ipmi_cmd *); int kcs_recvmsg(struct ipmi_cmd *); int bt_probe(struct ipmi_softc *); int bt_reset(struct ipmi_softc *); int bt_sendmsg(struct ipmi_cmd *); int bt_recvmsg(struct ipmi_cmd *); int smic_probe(struct ipmi_softc *); int smic_reset(struct ipmi_softc *); int smic_sendmsg(struct ipmi_cmd *); int smic_recvmsg(struct ipmi_cmd *); struct ipmi_if kcs_if = { "KCS", IPMI_IF_KCS_NREGS, cmn_buildmsg, kcs_sendmsg, kcs_recvmsg, kcs_reset, kcs_probe, IPMI_MSG_DATASND, IPMI_MSG_DATARCV, }; struct ipmi_if smic_if = { "SMIC", IPMI_IF_SMIC_NREGS, cmn_buildmsg, smic_sendmsg, smic_recvmsg, smic_reset, smic_probe, IPMI_MSG_DATASND, IPMI_MSG_DATARCV, }; struct ipmi_if bt_if = { "BT", IPMI_IF_BT_NREGS, bt_buildmsg, bt_sendmsg, bt_recvmsg, bt_reset, bt_probe, IPMI_BTMSG_DATASND, IPMI_BTMSG_DATARCV, }; struct ipmi_if *ipmi_get_if(int); struct ipmi_if * ipmi_get_if(int iftype) { switch (iftype) { case IPMI_IF_KCS: return (&kcs_if); case IPMI_IF_SMIC: return (&smic_if); case IPMI_IF_BT: return (&bt_if); } return (NULL); } /* * BMC Helper Functions */ u_int8_t bmc_read(struct ipmi_softc *sc, int offset) { if (sc->sc_if_iosize == 4) return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing)); else return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing)); } void bmc_write(struct ipmi_softc *sc, int offset, u_int8_t val) { if (sc->sc_if_iosize == 4) bus_space_write_4(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing, val); else bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing, val); } int bmc_io_wait(struct ipmi_softc *sc, struct ipmi_iowait *a) { volatile u_int8_t v; int count = 5000000; /* == 5s XXX can be shorter */ while (count--) { v = bmc_read(sc, a->offset); if ((v & a->mask) == a->value) return v; delay(1); } dbg_printf(1, "%s: bmc_io_wait fails : *v=%.2x m=%.2x b=%.2x %s\n", DEVNAME(sc), v, a->mask, a->value, a->lbl); return (-1); } #define RSSA_MASK 0xff #define LUN_MASK 0x3 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & LUN_MASK)) /* * BT interface */ #define _BT_CTRL_REG 0 #define BT_CLR_WR_PTR (1L << 0) #define BT_CLR_RD_PTR (1L << 1) #define BT_HOST2BMC_ATN (1L << 2) #define BT_BMC2HOST_ATN (1L << 3) #define BT_EVT_ATN (1L << 4) #define BT_HOST_BUSY (1L << 6) #define BT_BMC_BUSY (1L << 7) #define BT_READY (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN) #define _BT_DATAIN_REG 1 #define _BT_DATAOUT_REG 1 #define _BT_INTMASK_REG 2 #define BT_IM_HIRQ_PEND (1L << 1) #define BT_IM_SCI_EN (1L << 2) #define BT_IM_SMI_EN (1L << 3) #define BT_IM_NMI2SMI (1L << 4) int bt_read(struct ipmi_softc *, int); int bt_write(struct ipmi_softc *, int, uint8_t); int bt_read(struct ipmi_softc *sc, int reg) { return bmc_read(sc, reg); } int bt_write(struct ipmi_softc *sc, int reg, uint8_t data) { struct ipmi_iowait a; a.offset = _BT_CTRL_REG; a.mask = BT_BMC_BUSY; a.value = 0; a.lbl = "bt_write"; if (bmc_io_wait(sc, &a) < 0) return (-1); bmc_write(sc, reg, data); return (0); } int bt_sendmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; struct ipmi_iowait a; int i; bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR); for (i = 0; i < c->c_txlen; i++) bt_write(sc, _BT_DATAOUT_REG, sc->sc_buf[i]); bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN); a.offset = _BT_CTRL_REG; a.mask = BT_HOST2BMC_ATN | BT_BMC_BUSY; a.value = 0; a.lbl = "bt_sendwait"; if (bmc_io_wait(sc, &a) < 0) return (-1); return (0); } int bt_recvmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; struct ipmi_iowait a; u_int8_t len, v, i, j; a.offset = _BT_CTRL_REG; a.mask = BT_BMC2HOST_ATN; a.value = BT_BMC2HOST_ATN; a.lbl = "bt_recvwait"; if (bmc_io_wait(sc, &a) < 0) return (-1); bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY); bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN); bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR); len = bt_read(sc, _BT_DATAIN_REG); for (i = IPMI_BTMSG_NFLN, j = 0; i <= len; i++) { v = bt_read(sc, _BT_DATAIN_REG); if (i != IPMI_BTMSG_SEQ) *(sc->sc_buf + j++) = v; } bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY); c->c_rxlen = len - 1; return (0); } int bt_reset(struct ipmi_softc *sc) { return (-1); } int bt_probe(struct ipmi_softc *sc) { u_int8_t rv; rv = bmc_read(sc, _BT_CTRL_REG); rv &= BT_HOST_BUSY; rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN; bmc_write(sc, _BT_CTRL_REG, rv); rv = bmc_read(sc, _BT_INTMASK_REG); rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI; rv |= BT_IM_HIRQ_PEND; bmc_write(sc, _BT_INTMASK_REG, rv); #if 0 printf("bt_probe: %2x\n", v); printf(" WR : %2x\n", v & BT_CLR_WR_PTR); printf(" RD : %2x\n", v & BT_CLR_RD_PTR); printf(" H2B : %2x\n", v & BT_HOST2BMC_ATN); printf(" B2H : %2x\n", v & BT_BMC2HOST_ATN); printf(" EVT : %2x\n", v & BT_EVT_ATN); printf(" HBSY : %2x\n", v & BT_HOST_BUSY); printf(" BBSY : %2x\n", v & BT_BMC_BUSY); #endif return (0); } /* * SMIC interface */ #define _SMIC_DATAIN_REG 0 #define _SMIC_DATAOUT_REG 0 #define _SMIC_CTRL_REG 1 #define SMS_CC_GET_STATUS 0x40 #define SMS_CC_START_TRANSFER 0x41 #define SMS_CC_NEXT_TRANSFER 0x42 #define SMS_CC_END_TRANSFER 0x43 #define SMS_CC_START_RECEIVE 0x44 #define SMS_CC_NEXT_RECEIVE 0x45 #define SMS_CC_END_RECEIVE 0x46 #define SMS_CC_TRANSFER_ABORT 0x47 #define SMS_SC_READY 0xc0 #define SMS_SC_WRITE_START 0xc1 #define SMS_SC_WRITE_NEXT 0xc2 #define SMS_SC_WRITE_END 0xc3 #define SMS_SC_READ_START 0xc4 #define SMS_SC_READ_NEXT 0xc5 #define SMS_SC_READ_END 0xc6 #define _SMIC_FLAG_REG 2 #define SMIC_BUSY (1L << 0) #define SMIC_SMS_ATN (1L << 2) #define SMIC_EVT_ATN (1L << 3) #define SMIC_SMI (1L << 4) #define SMIC_TX_DATA_RDY (1L << 6) #define SMIC_RX_DATA_RDY (1L << 7) int smic_wait(struct ipmi_softc *, u_int8_t, u_int8_t, const char *); int smic_write_cmd_data(struct ipmi_softc *, u_int8_t, const u_int8_t *); int smic_read_data(struct ipmi_softc *, u_int8_t *); int smic_wait(struct ipmi_softc *sc, u_int8_t mask, u_int8_t val, const char *lbl) { struct ipmi_iowait a; int v; /* Wait for expected flag bits */ a.offset = _SMIC_FLAG_REG; a.mask = mask; a.value = val; a.lbl = "smicwait"; v = bmc_io_wait(sc, &a); if (v < 0) return (-1); /* Return current status */ v = bmc_read(sc, _SMIC_CTRL_REG); dbg_printf(99, "smic_wait = %.2x\n", v); return (v); } int smic_write_cmd_data(struct ipmi_softc *sc, u_int8_t cmd, const u_int8_t *data) { int sts, v; dbg_printf(50, "smic_wcd: %.2x %.2x\n", cmd, data ? *data : -1); sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY, "smic_write_cmd_data ready"); if (sts < 0) return (sts); bmc_write(sc, _SMIC_CTRL_REG, cmd); if (data) bmc_write(sc, _SMIC_DATAOUT_REG, *data); /* Toggle BUSY bit, then wait for busy bit to clear */ v = bmc_read(sc, _SMIC_FLAG_REG); bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY); return (smic_wait(sc, SMIC_BUSY, 0, "smic_write_cmd_data busy")); } int smic_read_data(struct ipmi_softc *sc, u_int8_t *data) { int sts; sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY, "smic_read_data"); if (sts >= 0) { *data = bmc_read(sc, _SMIC_DATAIN_REG); dbg_printf(50, "smic_readdata: %.2x\n", *data); } return (sts); } #define ErrStat(a,b) if (a) printf(b); int smic_sendmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; int sts, idx; sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &sc->sc_buf[0]); ErrStat(sts != SMS_SC_WRITE_START, "wstart"); for (idx = 1; idx < c->c_txlen - 1; idx++) { sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER, &sc->sc_buf[idx]); ErrStat(sts != SMS_SC_WRITE_NEXT, "write"); } sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &sc->sc_buf[idx]); if (sts != SMS_SC_WRITE_END) { dbg_printf(50, "smic_sendmsg %d/%d = %.2x\n", idx, c->c_txlen, sts); return (-1); } return (0); } int smic_recvmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; int sts, idx; c->c_rxlen = 0; sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, "smic_recvmsg"); if (sts < 0) return (-1); sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL); ErrStat(sts != SMS_SC_READ_START, "rstart"); for (idx = 0;; ) { sts = smic_read_data(sc, &sc->sc_buf[idx++]); if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT) break; smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL); } ErrStat(sts != SMS_SC_READ_END, "rend"); c->c_rxlen = idx; sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL); if (sts != SMS_SC_READY) { dbg_printf(50, "smic_recvmsg %d/%d = %.2x\n", idx, c->c_maxrxlen, sts); return (-1); } return (0); } int smic_reset(struct ipmi_softc *sc) { return (-1); } int smic_probe(struct ipmi_softc *sc) { /* Flag register should not be 0xFF on a good system */ if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF) return (-1); return (0); } /* * KCS interface */ #define _KCS_DATAIN_REGISTER 0 #define _KCS_DATAOUT_REGISTER 0 #define KCS_READ_NEXT 0x68 #define _KCS_COMMAND_REGISTER 1 #define KCS_GET_STATUS 0x60 #define KCS_WRITE_START 0x61 #define KCS_WRITE_END 0x62 #define _KCS_STATUS_REGISTER 1 #define KCS_OBF (1L << 0) #define KCS_IBF (1L << 1) #define KCS_SMS_ATN (1L << 2) #define KCS_CD (1L << 3) #define KCS_OEM1 (1L << 4) #define KCS_OEM2 (1L << 5) #define KCS_STATE_MASK 0xc0 #define KCS_IDLE_STATE 0x00 #define KCS_READ_STATE 0x40 #define KCS_WRITE_STATE 0x80 #define KCS_ERROR_STATE 0xC0 int kcs_wait(struct ipmi_softc *, u_int8_t, u_int8_t, const char *); int kcs_write_cmd(struct ipmi_softc *, u_int8_t); int kcs_write_data(struct ipmi_softc *, u_int8_t); int kcs_read_data(struct ipmi_softc *, u_int8_t *); int kcs_wait(struct ipmi_softc *sc, u_int8_t mask, u_int8_t value, const char *lbl) { struct ipmi_iowait a; int v; a.offset = _KCS_STATUS_REGISTER; a.mask = mask; a.value = value; a.lbl = lbl; v = bmc_io_wait(sc, &a); if (v < 0) return (v); /* Check if output buffer full, read dummy byte */ if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE)) bmc_read(sc, _KCS_DATAIN_REGISTER); /* Check for error state */ if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) { bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS); while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF) continue; printf("%s: error code: %x\n", DEVNAME(sc), bmc_read(sc, _KCS_DATAIN_REGISTER)); } return (v & KCS_STATE_MASK); } int kcs_write_cmd(struct ipmi_softc *sc, u_int8_t cmd) { /* ASSERT: IBF and OBF are clear */ dbg_printf(50, "kcswritecmd: %.2x\n", cmd); bmc_write(sc, _KCS_COMMAND_REGISTER, cmd); return (kcs_wait(sc, KCS_IBF, 0, "write_cmd")); } int kcs_write_data(struct ipmi_softc *sc, u_int8_t data) { /* ASSERT: IBF and OBF are clear */ dbg_printf(50, "kcswritedata: %.2x\n", data); bmc_write(sc, _KCS_DATAOUT_REGISTER, data); return (kcs_wait(sc, KCS_IBF, 0, "write_data")); } int kcs_read_data(struct ipmi_softc *sc, u_int8_t * data) { int sts; sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, "read_data"); if (sts != KCS_READ_STATE) return (sts); /* ASSERT: OBF is set read data, request next byte */ *data = bmc_read(sc, _KCS_DATAIN_REGISTER); bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT); dbg_printf(50, "kcsreaddata: %.2x\n", *data); return (sts); } /* Exported KCS functions */ int kcs_sendmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; int idx, sts; /* ASSERT: IBF is clear */ dbg_dump(50, "kcs sendmsg", c->c_txlen, sc->sc_buf); sts = kcs_write_cmd(sc, KCS_WRITE_START); for (idx = 0; idx < c->c_txlen; idx++) { if (idx == c->c_txlen - 1) sts = kcs_write_cmd(sc, KCS_WRITE_END); if (sts != KCS_WRITE_STATE) break; sts = kcs_write_data(sc, sc->sc_buf[idx]); } if (sts != KCS_READ_STATE) { dbg_printf(1, "kcs sendmsg = %d/%d <%.2x>\n", idx, c->c_txlen, sts); dbg_dump(1, "kcs_sendmsg", c->c_txlen, sc->sc_buf); return (-1); } return (0); } int kcs_recvmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; int idx, sts; for (idx = 0; idx < c->c_maxrxlen; idx++) { sts = kcs_read_data(sc, &sc->sc_buf[idx]); if (sts != KCS_READ_STATE) break; } sts = kcs_wait(sc, KCS_IBF, 0, "recv"); c->c_rxlen = idx; if (sts != KCS_IDLE_STATE) { dbg_printf(1, "kcs recvmsg = %d/%d <%.2x>\n", idx, c->c_maxrxlen, sts); return (-1); } dbg_dump(50, "kcs recvmsg", idx, sc->sc_buf); return (0); } int kcs_reset(struct ipmi_softc *sc) { return (-1); } int kcs_probe(struct ipmi_softc *sc) { u_int8_t v; v = bmc_read(sc, _KCS_STATUS_REGISTER); if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) return (1); #if 0 printf("kcs_probe: %2x\n", v); printf(" STS: %2x\n", v & KCS_STATE_MASK); printf(" ATN: %2x\n", v & KCS_SMS_ATN); printf(" C/D: %2x\n", v & KCS_CD); printf(" IBF: %2x\n", v & KCS_IBF); printf(" OBF: %2x\n", v & KCS_OBF); #endif return (0); } /* * IPMI code */ #define READ_SMS_BUFFER 0x37 #define WRITE_I2C 0x50 #define GET_MESSAGE_CMD 0x33 #define SEND_MESSAGE_CMD 0x34 #define IPMB_CHANNEL_NUMBER 0 #define PUBLIC_BUS 0 #define MIN_I2C_PACKET_SIZE 3 #define MIN_IMB_PACKET_SIZE 7 /* one byte for cksum */ #define MIN_BTBMC_REQ_SIZE 4 #define MIN_BTBMC_RSP_SIZE 5 #define MIN_BMC_REQ_SIZE 2 #define MIN_BMC_RSP_SIZE 3 #define BMC_SA 0x20 /* BMC/ESM3 */ #define FPC_SA 0x22 /* front panel */ #define BP_SA 0xC0 /* Primary Backplane */ #define BP2_SA 0xC2 /* Secondary Backplane */ #define PBP_SA 0xC4 /* Peripheral Backplane */ #define DRAC_SA 0x28 /* DRAC-III */ #define DRAC3_SA 0x30 /* DRAC-III */ #define BMC_LUN 0 #define SMS_LUN 2 struct ipmi_request { u_int8_t rsSa; u_int8_t rsLun; u_int8_t netFn; u_int8_t cmd; u_int8_t data_len; u_int8_t *data; }; struct ipmi_response { u_int8_t cCode; u_int8_t data_len; u_int8_t *data; }; struct ipmi_bmc_request { u_int8_t bmc_nfLn; u_int8_t bmc_cmd; u_int8_t bmc_data_len; u_int8_t bmc_data[1]; }; struct ipmi_bmc_response { u_int8_t bmc_nfLn; u_int8_t bmc_cmd; u_int8_t bmc_cCode; u_int8_t bmc_data_len; u_int8_t bmc_data[1]; }; struct cfdriver ipmi_cd = { NULL, "ipmi", DV_DULL }; void dumpb(const char *lbl, int len, const u_int8_t *data) { int idx; printf("%s: ", lbl); for (idx = 0; idx < len; idx++) printf("%.2x ", data[idx]); printf("\n"); } /* * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data * This is used by BT protocol */ void bt_buildmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; u_int8_t *buf = sc->sc_buf; buf[IPMI_BTMSG_LEN] = c->c_txlen + (IPMI_BTMSG_DATASND - 1); buf[IPMI_BTMSG_NFLN] = NETFN_LUN(c->c_netfn, c->c_rslun); buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++; buf[IPMI_BTMSG_CMD] = c->c_cmd; if (c->c_txlen && c->c_data) memcpy(buf + IPMI_BTMSG_DATASND, c->c_data, c->c_txlen); } /* * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data * This is used by both SMIC and KCS protocols */ void cmn_buildmsg(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; u_int8_t *buf = sc->sc_buf; buf[IPMI_MSG_NFLN] = NETFN_LUN(c->c_netfn, c->c_rslun); buf[IPMI_MSG_CMD] = c->c_cmd; if (c->c_txlen && c->c_data) memcpy(buf + IPMI_MSG_DATASND, c->c_data, c->c_txlen); } /* Send an IPMI command */ int ipmi_sendcmd(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; int rc = -1; dbg_printf(50, "ipmi_sendcmd: rssa=%.2x nfln=%.2x cmd=%.2x len=%.2x\n", c->c_rssa, NETFN_LUN(c->c_netfn, c->c_rslun), c->c_cmd, c->c_txlen); dbg_dump(10, " send", c->c_txlen, c->c_data); if (c->c_rssa != BMC_SA) { #if 0 sc->sc_if->buildmsg(c); pI2C->bus = (sc->if_ver == 0x09) ? PUBLIC_BUS : IPMB_CHANNEL_NUMBER; imbreq->rsSa = rssa; imbreq->nfLn = NETFN_LUN(netfn, rslun); imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn); imbreq->rqSa = BMC_SA; imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN); imbreq->cmd = cmd; if (txlen) memcpy(imbreq->data, data, txlen); /* Set message checksum */ imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3); #endif goto done; } else sc->sc_if->buildmsg(c); c->c_txlen += sc->sc_if->datasnd; rc = sc->sc_if->sendmsg(c); done: return (rc); } /* Receive an IPMI command */ int ipmi_recvcmd(struct ipmi_cmd *c) { struct ipmi_softc *sc = c->c_sc; u_int8_t *buf = sc->sc_buf, rc = 0; /* Receive message from interface, copy out result data */ c->c_maxrxlen += sc->sc_if->datarcv; if (sc->sc_if->recvmsg(c) || c->c_rxlen < sc->sc_if->datarcv) { return (-1); } c->c_rxlen -= sc->sc_if->datarcv; if (c->c_rxlen > 0 && c->c_data) memcpy(c->c_data, buf + sc->sc_if->datarcv, c->c_rxlen); rc = buf[IPMI_MSG_CCODE]; #ifdef IPMI_DEBUG if (rc != 0) dbg_printf(1, "ipmi_recvcmd: nfln=%.2x cmd=%.2x err=%.2x\n", buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]); #endif dbg_printf(50, "ipmi_recvcmd: nfln=%.2x cmd=%.2x err=%.2x len=%.2x\n", buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE], c->c_rxlen); dbg_dump(10, " recv", c->c_rxlen, c->c_data); return (rc); } void ipmi_cmd(struct ipmi_cmd *c) { if (cold || panicstr != NULL) ipmi_cmd_poll(c); else ipmi_cmd_wait(c); } void ipmi_cmd_poll(struct ipmi_cmd *c) { if ((c->c_ccode = ipmi_sendcmd(c))) printf("%s: sendcmd fails\n", DEVNAME(c->c_sc)); else c->c_ccode = ipmi_recvcmd(c); } void ipmi_cmd_wait(struct ipmi_cmd *c) { struct task t; int res; task_set(&t, ipmi_cmd_wait_cb, c); res = task_add(c->c_sc->sc_cmd_taskq, &t); KASSERT(res == 1); tsleep_nsec(c, PWAIT, "ipmicmd", INFSLP); res = task_del(c->c_sc->sc_cmd_taskq, &t); KASSERT(res == 0); } void ipmi_cmd_wait_cb(void *arg) { struct ipmi_cmd *c = arg; ipmi_cmd_poll(c); wakeup(c); } /* Read a partial SDR entry */ int get_sdr_partial(struct ipmi_softc *sc, u_int16_t recordId, u_int16_t reserveId, u_int8_t offset, u_int8_t length, void *buffer, u_int16_t *nxtRecordId) { u_int8_t cmd[IPMI_GET_WDOG_MAX + 255]; /* 8 + max of length */ int len; ((u_int16_t *) cmd)[0] = reserveId; ((u_int16_t *) cmd)[1] = recordId; cmd[4] = offset; cmd[5] = length; struct ipmi_cmd c; c.c_sc = sc; c.c_rssa = BMC_SA; c.c_rslun = BMC_LUN; c.c_netfn = STORAGE_NETFN; c.c_cmd = STORAGE_GET_SDR; c.c_txlen = IPMI_SET_WDOG_MAX; c.c_rxlen = 0; c.c_maxrxlen = 8 + length; c.c_data = cmd; ipmi_cmd(&c); len = c.c_rxlen; if (nxtRecordId) *nxtRecordId = *(uint16_t *) cmd; if (len > 2) memcpy(buffer, cmd + 2, len - 2); else return (1); return (0); } int maxsdrlen = 0x10; /* Read an entire SDR; pass to add sensor */ int get_sdr(struct ipmi_softc *sc, u_int16_t recid, u_int16_t *nxtrec) { u_int16_t resid = 0; int len, sdrlen, offset; u_int8_t *psdr; struct sdrhdr shdr; /* Reserve SDR */ struct ipmi_cmd c; c.c_sc = sc; c.c_rssa = BMC_SA; c.c_rslun = BMC_LUN; c.c_netfn = STORAGE_NETFN; c.c_cmd = STORAGE_RESERVE_SDR; c.c_txlen = 0; c.c_maxrxlen = sizeof(resid); c.c_rxlen = 0; c.c_data = &resid; ipmi_cmd(&c); /* Get SDR Header */ if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) { printf("%s: get header fails\n", DEVNAME(sc)); return (1); } /* Allocate space for entire SDR Length of SDR in header does not * include header length */ sdrlen = sizeof(shdr) + shdr.record_length; psdr = malloc(sdrlen, M_DEVBUF, M_NOWAIT); if (psdr == NULL) return (1); memcpy(psdr, &shdr, sizeof(shdr)); /* Read SDR Data maxsdrlen bytes at a time */ for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) { len = sdrlen - offset; if (len > maxsdrlen) len = maxsdrlen; if (get_sdr_partial(sc, recid, resid, offset, len, psdr + offset, NULL)) { printf("%s: get chunk: %d,%d fails\n", DEVNAME(sc), offset, len); free(psdr, M_DEVBUF, sdrlen); return (1); } } /* Add SDR to sensor list, if not wanted, free buffer */ if (add_sdr_sensor(sc, psdr, sdrlen) == 0) free(psdr, M_DEVBUF, sdrlen); return (0); } int getbits(u_int8_t *bytes, int bitpos, int bitlen) { int v; int mask; bitpos += bitlen - 1; for (v = 0; bitlen--;) { v <<= 1; mask = 1L << (bitpos & 7); if (bytes[bitpos >> 3] & mask) v |= 1; bitpos--; } return (v); } /* Decode IPMI sensor name */ int ipmi_sensor_name(char *name, int len, u_int8_t typelen, u_int8_t *bits, int bitslen) { int i, slen; char bcdplus[] = "0123456789 -.:,_"; slen = typelen & 0x1F; switch (typelen >> 6) { case IPMI_NAME_UNICODE: //unicode break; case IPMI_NAME_BCDPLUS: /* Characters are encoded in 4-bit BCDPLUS */ if (len < slen * 2 + 1) slen = (len >> 1) - 1; if (slen > bitslen) return (0); for (i = 0; i < slen; i++) { *(name++) = bcdplus[bits[i] >> 4]; *(name++) = bcdplus[bits[i] & 0xF]; } break; case IPMI_NAME_ASCII6BIT: /* Characters are encoded in 6-bit ASCII * 0x00 - 0x3F maps to 0x20 - 0x5F */ /* XXX: need to calculate max len: slen = 3/4 * len */ if (len < slen + 1) slen = len - 1; if (slen * 6 / 8 > bitslen) return (0); for (i = 0; i < slen * 8; i += 6) { *(name++) = getbits(bits, i, 6) + ' '; } break; case IPMI_NAME_ASCII8BIT: /* Characters are 8-bit ascii */ if (len < slen + 1) slen = len - 1; if (slen > bitslen) return (0); while (slen--) *(name++) = *(bits++); break; } *name = 0; return (1); } /* Calculate val * 10^exp */ long ipow(long val, int exp) { while (exp > 0) { val *= 10; exp--; } while (exp < 0) { val /= 10; exp++; } return (val); } /* Sign extend a n-bit value */ long signextend(unsigned long val, int bits) { long msk = (1L << (bits-1))-1; return (-(val & ~msk) | val); } /* Convert IPMI reading from sensor factors */ long ipmi_convert(u_int8_t v, struct sdrtype1 *s1, long adj) { int16_t M, B; int8_t K1, K2; long val; /* Calculate linear reading variables */ M = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10); B = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10); K1 = signextend(s1->rbexp & 0xF, 4); K2 = signextend(s1->rbexp >> 4, 4); /* Calculate sensor reading: * y = L((M * v + (B * 10^K1)) * 10^(K2+adj) * * This commutes out to: * y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */ val = ipow(M * v, K2 + adj) + ipow(B, K1 + K2 + adj); /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y = * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube * root(x) */ return (val); } int ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor, u_int8_t *reading) { struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr; int etype; /* Get reading of sensor */ switch (psensor->i_sensor.type) { case SENSOR_TEMP: psensor->i_sensor.value = ipmi_convert(reading[0], s1, 6); psensor->i_sensor.value += 273150000; break; case SENSOR_VOLTS_DC: case SENSOR_VOLTS_AC: case SENSOR_AMPS: case SENSOR_WATTS: psensor->i_sensor.value = ipmi_convert(reading[0], s1, 6); break; case SENSOR_FANRPM: psensor->i_sensor.value = ipmi_convert(reading[0], s1, 0); if (((s1->units1>>3)&0x7) == 0x3) psensor->i_sensor.value *= 60; // RPS -> RPM break; default: break; } /* Return Sensor Status */ etype = (psensor->etype << 8) + psensor->stype; switch (etype) { case IPMI_SENSOR_TYPE_TEMP: case IPMI_SENSOR_TYPE_VOLT: case IPMI_SENSOR_TYPE_CURRENT: case IPMI_SENSOR_TYPE_FAN: /* non-recoverable threshold */ if (reading[2] & ((1 << 5) | (1 << 2))) return (SENSOR_S_CRIT); /* critical threshold */ else if (reading[2] & ((1 << 4) | (1 << 1))) return (SENSOR_S_CRIT); /* non-critical threshold */ else if (reading[2] & ((1 << 3) | (1 << 0))) return (SENSOR_S_WARN); break; case IPMI_SENSOR_TYPE_INTRUSION: psensor->i_sensor.value = (reading[2] & 1) ? 1 : 0; if (reading[2] & 0x1) return (SENSOR_S_CRIT); break; case IPMI_SENSOR_TYPE_PWRSUPPLY: /* Reading: 1 = present+powered, 0 = otherwise */ psensor->i_sensor.value = (reading[2] & 1) ? 1 : 0; if (reading[2] & 0x10) { /* XXX: Need sysctl type for Power Supply types * ok: power supply installed && powered * warn: power supply installed && !powered * crit: power supply !installed */ return (SENSOR_S_CRIT); } if (reading[2] & 0x08) { /* Power supply AC lost */ return (SENSOR_S_WARN); } break; } return (SENSOR_S_OK); } int read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor) { struct sdrtype1 *s1 = (struct sdrtype1 *) psensor->i_sdr; u_int8_t data[8]; int rv = -1; memset(data, 0, sizeof(data)); data[0] = psensor->i_num; struct ipmi_cmd c; c.c_sc = sc; c.c_rssa = s1->owner_id; c.c_rslun = s1->owner_lun; c.c_netfn = SE_NETFN; c.c_cmd = SE_GET_SENSOR_READING; c.c_txlen = 1; c.c_maxrxlen = sizeof(data); c.c_rxlen = 0; c.c_data = data; ipmi_cmd(&c); if (c.c_ccode != 0) { dbg_printf(1, "sensor reading command for %s failed: %.2x\n", psensor->i_sensor.desc, c.c_ccode); return (rv); } dbg_printf(10, "values=%.2x %.2x %.2x %.2x %s\n", data[0],data[1],data[2],data[3], psensor->i_sensor.desc); psensor->i_sensor.flags &= ~SENSOR_FINVALID; if ((data[1] & IPMI_INVALID_SENSOR) || ((data[1] & IPMI_DISABLED_SENSOR) == 0 && data[0] == 0)) psensor->i_sensor.flags |= SENSOR_FINVALID; psensor->i_sensor.status = ipmi_sensor_status(sc, psensor, data); rv = 0; return (rv); } int ipmi_sensor_type(int type, int ext_type, int units2, int entity) { switch (units2) { case IPMI_UNIT_TYPE_AMPS: return (SENSOR_AMPS); case IPMI_UNIT_TYPE_RPM: return (SENSOR_FANRPM); /* XXX sensors framework distinguishes AC/DC but ipmi does not */ case IPMI_UNIT_TYPE_VOLTS: return (SENSOR_VOLTS_DC); case IPMI_UNIT_TYPE_WATTS: return (SENSOR_WATTS); } switch (ext_type << 8L | type) { case IPMI_SENSOR_TYPE_TEMP: return (SENSOR_TEMP); case IPMI_SENSOR_TYPE_PWRSUPPLY: if (entity == IPMI_ENTITY_PWRSUPPLY) return (SENSOR_INDICATOR); break; case IPMI_SENSOR_TYPE_INTRUSION: return (SENSOR_INDICATOR); } return (-1); } /* Add Sensor to BSD Sysctl interface */ int add_sdr_sensor(struct ipmi_softc *sc, u_int8_t *psdr, int sdrlen) { int rc; struct sdrtype1 *s1 = (struct sdrtype1 *)psdr; struct sdrtype2 *s2 = (struct sdrtype2 *)psdr; char name[64]; switch (s1->sdrhdr.record_type) { case IPMI_SDR_TYPEFULL: rc = ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name, sdrlen - (int)offsetof(struct sdrtype1, name)); if (rc == 0) return (0); rc = add_child_sensors(sc, psdr, 1, s1->sensor_num, s1->sensor_type, s1->event_code, 0, s1->entity_id, name); break; case IPMI_SDR_TYPECOMPACT: rc = ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name, sdrlen - (int)offsetof(struct sdrtype2, name)); if (rc == 0) return (0); rc = add_child_sensors(sc, psdr, s2->share1 & 0xF, s2->sensor_num, s2->sensor_type, s2->event_code, s2->share2 & 0x7F, s2->entity_id, name); break; default: return (0); } return rc; } int add_child_sensors(struct ipmi_softc *sc, u_int8_t *psdr, int count, int sensor_num, int sensor_type, int ext_type, int sensor_base, int entity, const char *name) { int typ, idx, rc = 0; struct ipmi_sensor *psensor; struct sdrtype1 *s1 = (struct sdrtype1 *)psdr; typ = ipmi_sensor_type(sensor_type, ext_type, s1->units2, entity); if (typ == -1) { dbg_printf(5, "Unknown sensor type:%.2x et:%.2x sn:%.2x " "units2:%u name:%s\n", sensor_type, ext_type, sensor_num, s1->units2, name); return 0; } for (idx = 0; idx < count; idx++) { psensor = malloc(sizeof(*psensor), M_DEVBUF, M_NOWAIT | M_ZERO); if (psensor == NULL) break; /* Initialize BSD Sensor info */ psensor->i_sdr = psdr; psensor->i_num = sensor_num + idx; psensor->stype = sensor_type; psensor->etype = ext_type; psensor->i_sensor.type = typ; if (count > 1) snprintf(psensor->i_sensor.desc, sizeof(psensor->i_sensor.desc), "%s - %d", name, sensor_base + idx); else strlcpy(psensor->i_sensor.desc, name, sizeof(psensor->i_sensor.desc)); dbg_printf(5, "add sensor:%.4x %.2x:%d ent:%.2x:%.2x %s\n", s1->sdrhdr.record_id, s1->sensor_type, typ, s1->entity_id, s1->entity_instance, psensor->i_sensor.desc); if (read_sensor(sc, psensor) == 0) { SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, list); sensor_attach(&sc->sc_sensordev, &psensor->i_sensor); dbg_printf(5, " reading: %lld [%s]\n", psensor->i_sensor.value, psensor->i_sensor.desc); rc = 1; } else free(psensor, M_DEVBUF, sizeof(*psensor)); } return (rc); } /* Handle IPMI Timer - reread sensor values */ void ipmi_refresh_sensors(struct ipmi_softc *sc) { if (SLIST_EMPTY(&ipmi_sensor_list)) return; sc->current_sensor = SLIST_NEXT(sc->current_sensor, list); if (sc->current_sensor == NULL) sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list); if (read_sensor(sc, sc->current_sensor)) { dbg_printf(1, "%s: error reading: %s\n", DEVNAME(sc), sc->current_sensor->i_sensor.desc); return; } } int ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia) { if (sc->sc_if && sc->sc_if->nregs == 0) return (0); sc->sc_if = ipmi_get_if(ia->iaa_if_type); if (sc->sc_if == NULL) return (-1); if (ia->iaa_if_iotype == 'i') sc->sc_iot = ia->iaa_iot; else sc->sc_iot = ia->iaa_memt; sc->sc_if_rev = ia->iaa_if_rev; sc->sc_if_iosize = ia->iaa_if_iosize; sc->sc_if_iospacing = ia->iaa_if_iospacing; if (bus_space_map(sc->sc_iot, ia->iaa_if_iobase, sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) { printf("%s: bus_space_map(%lx %lx %x 0 %p) failed\n", DEVNAME(sc), (unsigned long)sc->sc_iot, ia->iaa_if_iobase, sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh); return (-1); } return (0); } void ipmi_unmap_regs(struct ipmi_softc *sc) { if (sc->sc_if->nregs > 0) { bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_if->nregs * sc->sc_if_iospacing); } } void ipmi_poll_thread(void *arg) { struct ipmi_thread *thread = arg; struct ipmi_softc *sc = thread->sc; u_int16_t rec; /* Scan SDRs, add sensors */ for (rec = 0; rec != 0xFFFF;) { if (get_sdr(sc, rec, &rec)) { ipmi_unmap_regs(sc); printf("%s: no SDRs IPMI disabled\n", DEVNAME(sc)); goto done; } tsleep_nsec(sc, PWAIT, "ipmirun", MSEC_TO_NSEC(1)); } /* initialize sensor list for thread */ if (SLIST_EMPTY(&ipmi_sensor_list)) goto done; else sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list); strlcpy(sc->sc_sensordev.xname, sc->sc_dev.dv_xname, sizeof(sc->sc_sensordev.xname)); sensordev_install(&sc->sc_sensordev); while (thread->running) { ipmi_refresh_sensors(sc); tsleep_nsec(thread, PWAIT, "ipmi_poll", SEC_TO_NSEC(SENSOR_REFRESH_RATE)); } done: kthread_exit(0); } void ipmi_create_thread(void *arg) { struct ipmi_softc *sc = arg; if (kthread_create(ipmi_poll_thread, sc->sc_thread, NULL, DEVNAME(sc)) != 0) { printf("%s: unable to create run thread, ipmi disabled\n", DEVNAME(sc)); return; } } void ipmi_attach_common(struct ipmi_softc *sc, struct ipmi_attach_args *ia) { struct ipmi_cmd *c = &sc->sc_ioctl.cmd; /* Map registers */ ipmi_map_regs(sc, ia); sc->sc_thread = malloc(sizeof(struct ipmi_thread), M_DEVBUF, M_NOWAIT); if (sc->sc_thread == NULL) { printf(": unable to allocate thread\n"); return; } sc->sc_thread->sc = sc; sc->sc_thread->running = 1; /* Setup threads */ kthread_create_deferred(ipmi_create_thread, sc); printf(": version %d.%d interface %s", ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name); if (sc->sc_if->nregs > 0) printf(" %sbase 0x%lx/%x spacing %d", ia->iaa_if_iotype == 'i' ? "io" : "mem", ia->iaa_if_iobase, ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing); if (ia->iaa_if_irq != -1) printf(" irq %d", ia->iaa_if_irq); printf("\n"); /* setup flag to exclude iic */ ipmi_enabled = 1; /* Setup Watchdog timer */ sc->sc_wdog_period = 0; task_set(&sc->sc_wdog_tickle_task, ipmi_watchdog_tickle, sc); wdog_register(ipmi_watchdog, sc); rw_init(&sc->sc_ioctl.lock, DEVNAME(sc)); sc->sc_ioctl.req.msgid = -1; c->c_sc = sc; c->c_ccode = -1; sc->sc_cmd_taskq = taskq_create("ipmicmd", 1, IPL_MPFLOOR, TASKQ_MPSAFE); } int ipmi_activate(struct device *self, int act) { switch (act) { case DVACT_POWERDOWN: wdog_shutdown(self); break; } return (0); } struct ipmi_softc * ipmilookup(dev_t dev) { return (struct ipmi_softc *)device_lookup(&ipmi_cd, minor(dev)); } int ipmiopen(dev_t dev, int flags, int mode, struct proc *p) { struct ipmi_softc *sc = ipmilookup(dev); if (sc == NULL) return (ENXIO); return (0); } int ipmiclose(dev_t dev, int flags, int mode, struct proc *p) { struct ipmi_softc *sc = ipmilookup(dev); if (sc == NULL) return (ENXIO); return (0); } int ipmiioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *proc) { struct ipmi_softc *sc = ipmilookup(dev); struct ipmi_req *req = (struct ipmi_req *)data; struct ipmi_recv *recv = (struct ipmi_recv *)data; struct ipmi_cmd *c = &sc->sc_ioctl.cmd; int iv; int len; u_char ccode; int rc = 0; if (sc == NULL) return (ENXIO); rw_enter_write(&sc->sc_ioctl.lock); c->c_maxrxlen = sizeof(sc->sc_ioctl.buf); c->c_data = sc->sc_ioctl.buf; switch (cmd) { case IPMICTL_SEND_COMMAND: if (req->msgid == -1) { rc = EINVAL; goto reset; } if (sc->sc_ioctl.req.msgid != -1) { rc = EBUSY; goto reset; } len = req->msg.data_len; if (len < 0) { rc = EINVAL; goto reset; } if (len > c->c_maxrxlen) { rc = E2BIG; goto reset; } sc->sc_ioctl.req = *req; c->c_ccode = -1; rc = copyin(req->msg.data, c->c_data, len); if (rc != 0) goto reset; KASSERT(c->c_ccode == -1); /* Execute a command synchronously. */ c->c_netfn = req->msg.netfn; c->c_cmd = req->msg.cmd; c->c_txlen = req->msg.data_len; c->c_rxlen = 0; ipmi_cmd(c); break; case IPMICTL_RECEIVE_MSG_TRUNC: case IPMICTL_RECEIVE_MSG: if (sc->sc_ioctl.req.msgid == -1) { rc = EINVAL; goto reset; } if (c->c_ccode == -1) { rc = EAGAIN; goto reset; } ccode = c->c_ccode & 0xff; rc = copyout(&ccode, recv->msg.data, 1); if (rc != 0) goto reset; /* Return a command result. */ recv->recv_type = IPMI_RESPONSE_RECV_TYPE; recv->msgid = sc->sc_ioctl.req.msgid; recv->msg.netfn = sc->sc_ioctl.req.msg.netfn; recv->msg.cmd = sc->sc_ioctl.req.msg.cmd; recv->msg.data_len = c->c_rxlen + 1; rc = copyout(c->c_data, recv->msg.data + 1, c->c_rxlen); /* Always reset state after command completion. */ goto reset; case IPMICTL_SET_MY_ADDRESS_CMD: iv = *(int *)data; if (iv < 0 || iv > RSSA_MASK) { rc = EINVAL; goto reset; } c->c_rssa = iv; break; case IPMICTL_GET_MY_ADDRESS_CMD: *(int *)data = c->c_rssa; break; case IPMICTL_SET_MY_LUN_CMD: iv = *(int *)data; if (iv < 0 || iv > LUN_MASK) { rc = EINVAL; goto reset; } c->c_rslun = iv; break; case IPMICTL_GET_MY_LUN_CMD: *(int *)data = c->c_rslun; break; case IPMICTL_SET_GETS_EVENTS_CMD: break; case IPMICTL_REGISTER_FOR_CMD: case IPMICTL_UNREGISTER_FOR_CMD: default: break; } done: rw_exit_write(&sc->sc_ioctl.lock); return (rc); reset: sc->sc_ioctl.req.msgid = -1; c->c_ccode = -1; goto done; } #define MIN_PERIOD 10 int ipmi_watchdog(void *arg, int period) { struct ipmi_softc *sc = arg; if (sc->sc_wdog_period == period) { if (period != 0) { struct task *t; int res; t = &sc->sc_wdog_tickle_task; (void)task_del(systq, t); res = task_add(systq, t); KASSERT(res == 1); } return (period); } if (period < MIN_PERIOD && period > 0) period = MIN_PERIOD; sc->sc_wdog_period = period; ipmi_watchdog_set(sc); printf("%s: watchdog %sabled\n", DEVNAME(sc), (period == 0) ? "dis" : "en"); return (period); } void ipmi_watchdog_tickle(void *arg) { struct ipmi_softc *sc = arg; struct ipmi_cmd c; c.c_sc = sc; c.c_rssa = BMC_SA; c.c_rslun = BMC_LUN; c.c_netfn = APP_NETFN; c.c_cmd = APP_RESET_WATCHDOG; c.c_txlen = 0; c.c_maxrxlen = 0; c.c_rxlen = 0; c.c_data = NULL; ipmi_cmd(&c); } void ipmi_watchdog_set(void *arg) { struct ipmi_softc *sc = arg; uint8_t wdog[IPMI_GET_WDOG_MAX]; struct ipmi_cmd c; c.c_sc = sc; c.c_rssa = BMC_SA; c.c_rslun = BMC_LUN; c.c_netfn = APP_NETFN; c.c_cmd = APP_GET_WATCHDOG_TIMER; c.c_txlen = 0; c.c_maxrxlen = IPMI_GET_WDOG_MAX; c.c_rxlen = 0; c.c_data = wdog; ipmi_cmd(&c); /* Period is 10ths/sec */ uint16_t timo = htole16(sc->sc_wdog_period * 10); memcpy(&wdog[IPMI_SET_WDOG_TIMOL], &timo, 2); wdog[IPMI_SET_WDOG_TIMER] &= ~IPMI_WDOG_DONTSTOP; wdog[IPMI_SET_WDOG_TIMER] |= (sc->sc_wdog_period == 0) ? 0 : IPMI_WDOG_DONTSTOP; wdog[IPMI_SET_WDOG_ACTION] &= ~IPMI_WDOG_MASK; wdog[IPMI_SET_WDOG_ACTION] |= (sc->sc_wdog_period == 0) ? IPMI_WDOG_DISABLED : IPMI_WDOG_REBOOT; c.c_cmd = APP_SET_WATCHDOG_TIMER; c.c_txlen = IPMI_SET_WDOG_MAX; c.c_maxrxlen = 0; c.c_rxlen = 0; c.c_data = wdog; ipmi_cmd(&c); } #if defined(__amd64__) || defined(__i386__) #include #include /* * Format of SMBIOS IPMI Flags * * bit0: interrupt trigger mode (1=level, 0=edge) * bit1: interrupt polarity (1=active high, 0=active low) * bit2: reserved * bit3: address LSB (1=odd,0=even) * bit4: interrupt (1=specified, 0=not specified) * bit5: reserved * bit6/7: register spacing (1,4,2,err) */ #define SMIPMI_FLAG_IRQLVL (1L << 0) #define SMIPMI_FLAG_IRQEN (1L << 3) #define SMIPMI_FLAG_ODDOFFSET (1L << 4) #define SMIPMI_FLAG_IFSPACING(x) (((x)>>6)&0x3) #define IPMI_IOSPACING_BYTE 0 #define IPMI_IOSPACING_WORD 2 #define IPMI_IOSPACING_DWORD 1 struct dmd_ipmi { u_int8_t dmd_sig[4]; /* Signature 'IPMI' */ u_int8_t dmd_i2c_address; /* Address of BMC */ u_int8_t dmd_nvram_address; /* Address of NVRAM */ u_int8_t dmd_if_type; /* IPMI Interface Type */ u_int8_t dmd_if_rev; /* IPMI Interface Revision */ } __packed; void *scan_sig(long, long, int, int, const void *); void ipmi_smbios_probe(struct smbios_ipmi *, struct ipmi_attach_args *); int ipmi_match(struct device *, void *, void *); void ipmi_attach(struct device *, struct device *, void *); const struct cfattach ipmi_ca = { sizeof(struct ipmi_softc), ipmi_match, ipmi_attach, NULL, ipmi_activate }; int ipmi_match(struct device *parent, void *match, void *aux) { struct ipmi_softc *sc; struct ipmi_attach_args *ia = aux; struct cfdata *cf = match; u_int8_t cmd[32]; int rv = 0; if (strcmp(ia->iaa_name, cf->cf_driver->cd_name)) return (0); /* XXX local softc is wrong wrong wrong */ sc = malloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO); strlcpy(sc->sc_dev.dv_xname, "ipmi0", sizeof(sc->sc_dev.dv_xname)); /* Map registers */ if (ipmi_map_regs(sc, ia) == 0) { sc->sc_if->probe(sc); /* Identify BMC device early to detect lying bios */ struct ipmi_cmd c; c.c_sc = sc; c.c_rssa = BMC_SA; c.c_rslun = BMC_LUN; c.c_netfn = APP_NETFN; c.c_cmd = APP_GET_DEVICE_ID; c.c_txlen = 0; c.c_maxrxlen = sizeof(cmd); c.c_rxlen = 0; c.c_data = cmd; ipmi_cmd(&c); dbg_dump(1, "bmc data", c.c_rxlen, cmd); rv = 1; /* GETID worked, we got IPMI */ ipmi_unmap_regs(sc); } free(sc, M_TEMP, sizeof(*sc)); return (rv); } void ipmi_attach(struct device *parent, struct device *self, void *aux) { ipmi_attach_common((struct ipmi_softc *)self, aux); } /* Scan memory for signature */ void * scan_sig(long start, long end, int skip, int len, const void *data) { void *va; while (start < end) { va = ISA_HOLE_VADDR(start); if (memcmp(va, data, len) == 0) return (va); start += skip; } return (NULL); } void ipmi_smbios_probe(struct smbios_ipmi *pipmi, struct ipmi_attach_args *ia) { dbg_printf(1, "ipmi_smbios_probe: %02x %02x %02x %02x %08llx %02x " "%02x\n", pipmi->smipmi_if_type, pipmi->smipmi_if_rev, pipmi->smipmi_i2c_address, pipmi->smipmi_nvram_address, pipmi->smipmi_base_address, pipmi->smipmi_base_flags, pipmi->smipmi_irq); ia->iaa_if_type = pipmi->smipmi_if_type; ia->iaa_if_rev = pipmi->smipmi_if_rev; ia->iaa_if_irq = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQEN) ? pipmi->smipmi_irq : -1; ia->iaa_if_irqlvl = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQLVL) ? IST_LEVEL : IST_EDGE; ia->iaa_if_iosize = 1; switch (SMIPMI_FLAG_IFSPACING(pipmi->smipmi_base_flags)) { case IPMI_IOSPACING_BYTE: ia->iaa_if_iospacing = 1; break; case IPMI_IOSPACING_DWORD: ia->iaa_if_iospacing = 4; break; case IPMI_IOSPACING_WORD: ia->iaa_if_iospacing = 2; break; default: ia->iaa_if_iospacing = 1; printf("ipmi: unknown register spacing\n"); } /* Calculate base address (PCI BAR format) */ if (pipmi->smipmi_base_address & 0x1) { ia->iaa_if_iotype = 'i'; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0x1; } else { ia->iaa_if_iotype = 'm'; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0xF; } if (pipmi->smipmi_base_flags & SMIPMI_FLAG_ODDOFFSET) ia->iaa_if_iobase++; if (pipmi->smipmi_base_flags == 0x7f) { /* IBM 325 eServer workaround */ ia->iaa_if_iospacing = 1; ia->iaa_if_iobase = pipmi->smipmi_base_address; ia->iaa_if_iotype = 'i'; return; } } int ipmi_probe(void *aux) { struct ipmi_attach_args *ia = aux; struct dmd_ipmi *pipmi; struct smbtable tbl; tbl.cookie = 0; if (smbios_find_table(SMBIOS_TYPE_IPMIDEV, &tbl)) ipmi_smbios_probe(tbl.tblhdr, ia); else { pipmi = (struct dmd_ipmi *)scan_sig(0xC0000L, 0xFFFFFL, 16, 4, "IPMI"); /* XXX hack to find Dell PowerEdge 8450 */ if (pipmi == NULL) { /* no IPMI found */ return (0); } /* we have an IPMI signature, fill in attach arg structure */ ia->iaa_if_type = pipmi->dmd_if_type; ia->iaa_if_rev = pipmi->dmd_if_rev; } return (1); } #endif