/* $OpenBSD: if_qwx_pci.c,v 1.15 2024/04/13 23:44:11 jsg Exp $ */ /* * Copyright 2023 Stefan Sperling * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Copyright (c) 2021-2022, Qualcomm Innovation Center, Inc. * Copyright (c) 2018-2021 The Linux Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted (subject to the limitations in the disclaimer * below) provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of [Owner Organization] nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY * THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX linux porting goo */ #ifdef __LP64__ #define BITS_PER_LONG 64 #else #define BITS_PER_LONG 32 #endif #define GENMASK(h, l) (((~0UL) >> (BITS_PER_LONG - (h) - 1)) & ((~0UL) << (l))) #define __bf_shf(x) (__builtin_ffsll(x) - 1) #define FIELD_GET(_m, _v) ((typeof(_m))(((_v) & (_m)) >> __bf_shf(_m))) #define BIT(x) (1UL << (x)) #define test_bit(i, a) ((a) & (1 << (i))) #define clear_bit(i, a) ((a)) &= ~(1 << (i)) #define set_bit(i, a) ((a)) |= (1 << (i)) /* #define QWX_DEBUG */ #include #include /* Headers needed for RDDM dump */ #include #include #include #include #include #include #define ATH11K_PCI_IRQ_CE0_OFFSET 3 #define ATH11K_PCI_IRQ_DP_OFFSET 14 #define ATH11K_PCI_CE_WAKE_IRQ 2 #define ATH11K_PCI_WINDOW_ENABLE_BIT 0x40000000 #define ATH11K_PCI_WINDOW_REG_ADDRESS 0x310c #define ATH11K_PCI_WINDOW_VALUE_MASK GENMASK(24, 19) #define ATH11K_PCI_WINDOW_START 0x80000 #define ATH11K_PCI_WINDOW_RANGE_MASK GENMASK(18, 0) /* BAR0 + 4k is always accessible, and no need to force wakeup. */ #define ATH11K_PCI_ACCESS_ALWAYS_OFF 0xFE0 /* 4K - 32 = 0xFE0 */ #define TCSR_SOC_HW_VERSION 0x0224 #define TCSR_SOC_HW_VERSION_MAJOR_MASK GENMASK(11, 8) #define TCSR_SOC_HW_VERSION_MINOR_MASK GENMASK(7, 0) /* * pci.h */ #define PCIE_SOC_GLOBAL_RESET 0x3008 #define PCIE_SOC_GLOBAL_RESET_V 1 #define WLAON_WARM_SW_ENTRY 0x1f80504 #define WLAON_SOC_RESET_CAUSE_REG 0x01f8060c #define PCIE_Q6_COOKIE_ADDR 0x01f80500 #define PCIE_Q6_COOKIE_DATA 0xc0000000 /* register to wake the UMAC from power collapse */ #define PCIE_SCRATCH_0_SOC_PCIE_REG 0x4040 /* register used for handshake mechanism to validate UMAC is awake */ #define PCIE_SOC_WAKE_PCIE_LOCAL_REG 0x3004 #define PCIE_PCIE_PARF_LTSSM 0x1e081b0 #define PARM_LTSSM_VALUE 0x111 #define GCC_GCC_PCIE_HOT_RST 0x1e402bc #define GCC_GCC_PCIE_HOT_RST_VAL 0x10 #define PCIE_PCIE_INT_ALL_CLEAR 0x1e08228 #define PCIE_SMLH_REQ_RST_LINK_DOWN 0x2 #define PCIE_INT_CLEAR_ALL 0xffffffff #define PCIE_QSERDES_COM_SYSCLK_EN_SEL_REG(sc) \ (sc->hw_params.regs->pcie_qserdes_sysclk_en_sel) #define PCIE_QSERDES_COM_SYSCLK_EN_SEL_VAL 0x10 #define PCIE_QSERDES_COM_SYSCLK_EN_SEL_MSK 0xffffffff #define PCIE_PCS_OSC_DTCT_CONFIG1_REG(sc) \ (sc->hw_params.regs->pcie_pcs_osc_dtct_config_base) #define PCIE_PCS_OSC_DTCT_CONFIG1_VAL 0x02 #define PCIE_PCS_OSC_DTCT_CONFIG2_REG(sc) \ (sc->hw_params.regs->pcie_pcs_osc_dtct_config_base + 0x4) #define PCIE_PCS_OSC_DTCT_CONFIG2_VAL 0x52 #define PCIE_PCS_OSC_DTCT_CONFIG4_REG(sc) \ (sc->hw_params.regs->pcie_pcs_osc_dtct_config_base + 0xc) #define PCIE_PCS_OSC_DTCT_CONFIG4_VAL 0xff #define PCIE_PCS_OSC_DTCT_CONFIG_MSK 0x000000ff #define WLAON_QFPROM_PWR_CTRL_REG 0x01f8031c #define QFPROM_PWR_CTRL_VDD4BLOW_MASK 0x4 /* * mhi.h */ #define PCIE_TXVECDB 0x360 #define PCIE_TXVECSTATUS 0x368 #define PCIE_RXVECDB 0x394 #define PCIE_RXVECSTATUS 0x39C #define MHI_CHAN_CTX_CHSTATE_MASK GENMASK(7, 0) #define MHI_CHAN_CTX_CHSTATE_DISABLED 0 #define MHI_CHAN_CTX_CHSTATE_ENABLED 1 #define MHI_CHAN_CTX_CHSTATE_RUNNING 2 #define MHI_CHAN_CTX_CHSTATE_SUSPENDED 3 #define MHI_CHAN_CTX_CHSTATE_STOP 4 #define MHI_CHAN_CTX_CHSTATE_ERROR 5 #define MHI_CHAN_CTX_BRSTMODE_MASK GENMASK(9, 8) #define MHI_CHAN_CTX_BRSTMODE_SHFT 8 #define MHI_CHAN_CTX_BRSTMODE_DISABLE 2 #define MHI_CHAN_CTX_BRSTMODE_ENABLE 3 #define MHI_CHAN_CTX_POLLCFG_MASK GENMASK(15, 10) #define MHI_CHAN_CTX_RESERVED_MASK GENMASK(31, 16) #define QWX_MHI_CONFIG_QCA6390_MAX_CHANNELS 128 #define QWX_MHI_CONFIG_QCA6390_TIMEOUT_MS 2000 #define QWX_MHI_CONFIG_QCA9074_MAX_CHANNELS 30 #define MHI_CHAN_TYPE_INVALID 0 #define MHI_CHAN_TYPE_OUTBOUND 1 /* to device */ #define MHI_CHAN_TYPE_INBOUND 2 /* from device */ #define MHI_CHAN_TYPE_INBOUND_COALESCED 3 #define MHI_EV_CTX_RESERVED_MASK GENMASK(7, 0) #define MHI_EV_CTX_INTMODC_MASK GENMASK(15, 8) #define MHI_EV_CTX_INTMODT_MASK GENMASK(31, 16) #define MHI_EV_CTX_INTMODT_SHFT 16 #define MHI_ER_TYPE_INVALID 0 #define MHI_ER_TYPE_VALID 1 #define MHI_ER_DATA 0 #define MHI_ER_CTRL 1 #define MHI_CH_STATE_DISABLED 0 #define MHI_CH_STATE_ENABLED 1 #define MHI_CH_STATE_RUNNING 2 #define MHI_CH_STATE_SUSPENDED 3 #define MHI_CH_STATE_STOP 4 #define MHI_CH_STATE_ERROR 5 #define QWX_NUM_EVENT_CTX 2 /* Event context. Shared with device. */ struct qwx_mhi_event_ctxt { uint32_t intmod; uint32_t ertype; uint32_t msivec; uint64_t rbase; uint64_t rlen; uint64_t rp; uint64_t wp; } __packed; /* Channel context. Shared with device. */ struct qwx_mhi_chan_ctxt { uint32_t chcfg; uint32_t chtype; uint32_t erindex; uint64_t rbase; uint64_t rlen; uint64_t rp; uint64_t wp; } __packed; /* Command context. Shared with device. */ struct qwx_mhi_cmd_ctxt { uint32_t reserved0; uint32_t reserved1; uint32_t reserved2; uint64_t rbase; uint64_t rlen; uint64_t rp; uint64_t wp; } __packed; struct qwx_mhi_ring_element { uint64_t ptr; uint32_t dword[2]; }; struct qwx_xfer_data { bus_dmamap_t map; struct mbuf *m; }; #define QWX_PCI_XFER_MAX_DATA_SIZE 0xffff #define QWX_PCI_XFER_RING_MAX_ELEMENTS 64 struct qwx_pci_xfer_ring { struct qwx_dmamem *dmamem; bus_size_t size; uint32_t mhi_chan_id; uint32_t mhi_chan_state; uint32_t mhi_chan_direction; uint32_t mhi_chan_event_ring_index; uint32_t db_addr; uint32_t cmd_status; int num_elements; int queued; struct qwx_xfer_data data[QWX_PCI_XFER_RING_MAX_ELEMENTS]; uint64_t rp; uint64_t wp; struct qwx_mhi_chan_ctxt *chan_ctxt; }; #define QWX_PCI_EVENT_RING_MAX_ELEMENTS 256 struct qwx_pci_event_ring { struct qwx_dmamem *dmamem; bus_size_t size; uint32_t mhi_er_type; uint32_t mhi_er_irq; uint32_t mhi_er_irq_moderation_ms; uint32_t db_addr; int num_elements; uint64_t rp; uint64_t wp; struct qwx_mhi_event_ctxt *event_ctxt; }; struct qwx_cmd_data { bus_dmamap_t map; struct mbuf *m; }; #define QWX_PCI_CMD_RING_MAX_ELEMENTS 128 struct qwx_pci_cmd_ring { struct qwx_dmamem *dmamem; bus_size_t size; uint64_t rp; uint64_t wp; int num_elements; int queued; }; struct qwx_pci_ops; struct qwx_msi_config; #define QWX_NUM_MSI_VEC 32 struct qwx_pci_softc { struct qwx_softc sc_sc; pci_chipset_tag_t sc_pc; pcitag_t sc_tag; int sc_cap_off; int sc_msi_off; pcireg_t sc_msi_cap; void *sc_ih[QWX_NUM_MSI_VEC]; char sc_ivname[QWX_NUM_MSI_VEC][16]; struct qwx_ext_irq_grp ext_irq_grp[ATH11K_EXT_IRQ_GRP_NUM_MAX]; int mhi_irq[2]; bus_space_tag_t sc_st; bus_space_handle_t sc_sh; bus_addr_t sc_map; bus_size_t sc_mapsize; pcireg_t sc_lcsr; uint32_t sc_flags; #define ATH11K_PCI_ASPM_RESTORE 1 uint32_t register_window; const struct qwx_pci_ops *sc_pci_ops; uint32_t bhi_off; uint32_t bhi_ee; uint32_t bhie_off; uint32_t mhi_state; uint32_t max_chan; uint64_t wake_db; /* * DMA memory for AMSS.bin firmware image. * This memory must remain available to the device until * the device is powered down. */ struct qwx_dmamem *amss_data; struct qwx_dmamem *amss_vec; struct qwx_dmamem *rddm_vec; struct qwx_dmamem *rddm_data; int rddm_triggered; struct task rddm_task; #define QWX_RDDM_DUMP_SIZE 0x420000 struct qwx_dmamem *chan_ctxt; struct qwx_dmamem *event_ctxt; struct qwx_dmamem *cmd_ctxt; struct qwx_pci_xfer_ring xfer_rings[4]; #define QWX_PCI_XFER_RING_LOOPBACK_OUTBOUND 0 #define QWX_PCI_XFER_RING_LOOPBACK_INBOUND 1 #define QWX_PCI_XFER_RING_IPCR_OUTBOUND 2 #define QWX_PCI_XFER_RING_IPCR_INBOUND 3 struct qwx_pci_event_ring event_rings[QWX_NUM_EVENT_CTX]; struct qwx_pci_cmd_ring cmd_ring; }; int qwx_pci_match(struct device *, void *, void *); void qwx_pci_attach(struct device *, struct device *, void *); int qwx_pci_detach(struct device *, int); void qwx_pci_attach_hook(struct device *); void qwx_pci_free_xfer_rings(struct qwx_pci_softc *); int qwx_pci_alloc_xfer_ring(struct qwx_softc *, struct qwx_pci_xfer_ring *, uint32_t, uint32_t, uint32_t, size_t); int qwx_pci_alloc_xfer_rings_qca6390(struct qwx_pci_softc *); int qwx_pci_alloc_xfer_rings_qcn9074(struct qwx_pci_softc *); void qwx_pci_free_event_rings(struct qwx_pci_softc *); int qwx_pci_alloc_event_ring(struct qwx_softc *, struct qwx_pci_event_ring *, uint32_t, uint32_t, uint32_t, size_t); int qwx_pci_alloc_event_rings(struct qwx_pci_softc *); void qwx_pci_free_cmd_ring(struct qwx_pci_softc *); int qwx_pci_init_cmd_ring(struct qwx_softc *, struct qwx_pci_cmd_ring *); uint32_t qwx_pci_read(struct qwx_softc *, uint32_t); void qwx_pci_write(struct qwx_softc *, uint32_t, uint32_t); void qwx_pci_read_hw_version(struct qwx_softc *, uint32_t *, uint32_t *); uint32_t qwx_pcic_read32(struct qwx_softc *, uint32_t); void qwx_pcic_write32(struct qwx_softc *, uint32_t, uint32_t); void qwx_pcic_ext_irq_enable(struct qwx_softc *); void qwx_pcic_ext_irq_disable(struct qwx_softc *); int qwx_pcic_config_irq(struct qwx_softc *, struct pci_attach_args *); int qwx_pci_start(struct qwx_softc *); void qwx_pci_stop(struct qwx_softc *); void qwx_pci_aspm_disable(struct qwx_softc *); void qwx_pci_aspm_restore(struct qwx_softc *); int qwx_pci_power_up(struct qwx_softc *); void qwx_pci_power_down(struct qwx_softc *); int qwx_pci_bus_wake_up(struct qwx_softc *); void qwx_pci_bus_release(struct qwx_softc *); void qwx_pci_window_write32(struct qwx_softc *, uint32_t, uint32_t); uint32_t qwx_pci_window_read32(struct qwx_softc *, uint32_t); int qwx_mhi_register(struct qwx_softc *); void qwx_mhi_unregister(struct qwx_softc *); void qwx_mhi_ring_doorbell(struct qwx_softc *sc, uint64_t, uint64_t); void qwx_mhi_device_wake(struct qwx_softc *); void qwx_mhi_device_zzz(struct qwx_softc *); int qwx_mhi_wake_db_clear_valid(struct qwx_softc *); void qwx_mhi_init_xfer_rings(struct qwx_pci_softc *); void qwx_mhi_init_event_rings(struct qwx_pci_softc *); void qwx_mhi_init_cmd_ring(struct qwx_pci_softc *); void qwx_mhi_init_dev_ctxt(struct qwx_pci_softc *); int qwx_mhi_send_cmd(struct qwx_pci_softc *psc, uint32_t, uint32_t); void * qwx_pci_xfer_ring_get_elem(struct qwx_pci_xfer_ring *, uint64_t); struct qwx_xfer_data *qwx_pci_xfer_ring_get_data(struct qwx_pci_xfer_ring *, uint64_t); int qwx_mhi_submit_xfer(struct qwx_softc *sc, struct mbuf *m); int qwx_mhi_start_channel(struct qwx_pci_softc *, struct qwx_pci_xfer_ring *); int qwx_mhi_start_channels(struct qwx_pci_softc *); int qwx_mhi_start(struct qwx_pci_softc *); void qwx_mhi_stop(struct qwx_softc *); int qwx_mhi_reset_device(struct qwx_softc *, int); void qwx_mhi_clear_vector(struct qwx_softc *); int qwx_mhi_fw_load_handler(struct qwx_pci_softc *); int qwx_mhi_await_device_reset(struct qwx_softc *); int qwx_mhi_await_device_ready(struct qwx_softc *); void qwx_mhi_ready_state_transition(struct qwx_pci_softc *); void qwx_mhi_mission_mode_state_transition(struct qwx_pci_softc *); void qwx_mhi_low_power_mode_state_transition(struct qwx_pci_softc *); void qwx_mhi_set_state(struct qwx_softc *, uint32_t); void qwx_mhi_init_mmio(struct qwx_pci_softc *); int qwx_mhi_fw_load_bhi(struct qwx_pci_softc *, uint8_t *, size_t); int qwx_mhi_fw_load_bhie(struct qwx_pci_softc *, uint8_t *, size_t); void qwx_rddm_prepare(struct qwx_pci_softc *); void qwx_rddm_task(void *); void * qwx_pci_event_ring_get_elem(struct qwx_pci_event_ring *, uint64_t); void qwx_pci_intr_ctrl_event_mhi(struct qwx_pci_softc *, uint32_t); void qwx_pci_intr_ctrl_event_ee(struct qwx_pci_softc *, uint32_t); void qwx_pci_intr_ctrl_event_cmd_complete(struct qwx_pci_softc *, uint64_t, uint32_t); int qwx_pci_intr_ctrl_event(struct qwx_pci_softc *, struct qwx_pci_event_ring *); void qwx_pci_intr_data_event_tx(struct qwx_pci_softc *, struct qwx_mhi_ring_element *); int qwx_pci_intr_data_event(struct qwx_pci_softc *, struct qwx_pci_event_ring *); int qwx_pci_intr_mhi_ctrl(void *); int qwx_pci_intr_mhi_data(void *); int qwx_pci_intr(void *); struct qwx_pci_ops { int (*wakeup)(struct qwx_softc *); void (*release)(struct qwx_softc *); int (*get_msi_irq)(struct qwx_softc *, unsigned int); void (*window_write32)(struct qwx_softc *, uint32_t, uint32_t); uint32_t (*window_read32)(struct qwx_softc *, uint32_t); int (*alloc_xfer_rings)(struct qwx_pci_softc *); }; static const struct qwx_pci_ops qwx_pci_ops_qca6390 = { .wakeup = qwx_pci_bus_wake_up, .release = qwx_pci_bus_release, #if notyet .get_msi_irq = qwx_pci_get_msi_irq, #endif .window_write32 = qwx_pci_window_write32, .window_read32 = qwx_pci_window_read32, .alloc_xfer_rings = qwx_pci_alloc_xfer_rings_qca6390, }; static const struct qwx_pci_ops qwx_pci_ops_qcn9074 = { .wakeup = NULL, .release = NULL, #if notyet .get_msi_irq = qwx_pci_get_msi_irq, #endif .window_write32 = qwx_pci_window_write32, .window_read32 = qwx_pci_window_read32, .alloc_xfer_rings = qwx_pci_alloc_xfer_rings_qcn9074, }; const struct cfattach qwx_pci_ca = { sizeof(struct qwx_pci_softc), qwx_pci_match, qwx_pci_attach, qwx_pci_detach, qwx_activate }; /* XXX pcidev */ #define PCI_PRODUCT_QUALCOMM_QCA6390 0x1101 #define PCI_PRODUCT_QUALCOMM_QCN9074 0x1104 static const struct pci_matchid qwx_pci_devices[] = { #if notyet { PCI_VENDOR_QUALCOMM, PCI_PRODUCT_QUALCOMM_QCA6390 }, { PCI_VENDOR_QUALCOMM, PCI_PRODUCT_QUALCOMM_QCN9074 }, #endif { PCI_VENDOR_QUALCOMM, PCI_PRODUCT_QUALCOMM_QCNFA765 } }; int qwx_pci_match(struct device *parent, void *match, void *aux) { return pci_matchbyid(aux, qwx_pci_devices, nitems(qwx_pci_devices)); } void qwx_pci_init_qmi_ce_config(struct qwx_softc *sc) { struct qwx_qmi_ce_cfg *cfg = &sc->qmi_ce_cfg; qwx_ce_get_shadow_config(sc, &cfg->shadow_reg_v2, &cfg->shadow_reg_v2_len); } const struct qwx_msi_config qwx_msi_config_one_msi = { .total_vectors = 1, .total_users = 4, .users = (struct qwx_msi_user[]) { { .name = "MHI", .num_vectors = 1, .base_vector = 0 }, { .name = "CE", .num_vectors = 1, .base_vector = 0 }, { .name = "WAKE", .num_vectors = 1, .base_vector = 0 }, { .name = "DP", .num_vectors = 1, .base_vector = 0 }, }, }; const struct qwx_msi_config qwx_msi_config[] = { { .total_vectors = 32, .total_users = 4, .users = (struct qwx_msi_user[]) { { .name = "MHI", .num_vectors = 3, .base_vector = 0 }, { .name = "CE", .num_vectors = 10, .base_vector = 3 }, { .name = "WAKE", .num_vectors = 1, .base_vector = 13 }, { .name = "DP", .num_vectors = 18, .base_vector = 14 }, }, .hw_rev = ATH11K_HW_QCA6390_HW20, }, { .total_vectors = 16, .total_users = 3, .users = (struct qwx_msi_user[]) { { .name = "MHI", .num_vectors = 3, .base_vector = 0 }, { .name = "CE", .num_vectors = 5, .base_vector = 3 }, { .name = "DP", .num_vectors = 8, .base_vector = 8 }, }, .hw_rev = ATH11K_HW_QCN9074_HW10, }, { .total_vectors = 32, .total_users = 4, .users = (struct qwx_msi_user[]) { { .name = "MHI", .num_vectors = 3, .base_vector = 0 }, { .name = "CE", .num_vectors = 10, .base_vector = 3 }, { .name = "WAKE", .num_vectors = 1, .base_vector = 13 }, { .name = "DP", .num_vectors = 18, .base_vector = 14 }, }, .hw_rev = ATH11K_HW_WCN6855_HW20, }, { .total_vectors = 32, .total_users = 4, .users = (struct qwx_msi_user[]) { { .name = "MHI", .num_vectors = 3, .base_vector = 0 }, { .name = "CE", .num_vectors = 10, .base_vector = 3 }, { .name = "WAKE", .num_vectors = 1, .base_vector = 13 }, { .name = "DP", .num_vectors = 18, .base_vector = 14 }, }, .hw_rev = ATH11K_HW_WCN6855_HW21, }, { .total_vectors = 28, .total_users = 2, .users = (struct qwx_msi_user[]) { { .name = "CE", .num_vectors = 10, .base_vector = 0 }, { .name = "DP", .num_vectors = 18, .base_vector = 10 }, }, .hw_rev = ATH11K_HW_WCN6750_HW10, }, }; int qwx_pcic_init_msi_config(struct qwx_softc *sc) { const struct qwx_msi_config *msi_config; int i; if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) { sc->msi_cfg = &qwx_msi_config_one_msi; return 0; } for (i = 0; i < nitems(qwx_msi_config); i++) { msi_config = &qwx_msi_config[i]; if (msi_config->hw_rev == sc->sc_hw_rev) break; } if (i == nitems(qwx_msi_config)) { printf("%s: failed to fetch msi config, " "unsupported hw version: 0x%x\n", sc->sc_dev.dv_xname, sc->sc_hw_rev); return EINVAL; } sc->msi_cfg = msi_config; return 0; } int qwx_pci_alloc_msi(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; uint64_t addr; pcireg_t data; if (psc->sc_msi_cap & PCI_MSI_MC_C64) { uint64_t addr_hi; pcireg_t addr_lo; addr_lo = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MA); addr_hi = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MAU32); addr = addr_hi << 32 | addr_lo; data = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MD64); } else { addr = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MA); data = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MD32); } sc->msi_addr_lo = addr & 0xffffffff; sc->msi_addr_hi = ((uint64_t)addr) >> 32; sc->msi_data_start = data; DPRINTF("%s: MSI addr: 0x%llx MSI data: 0x%x\n", sc->sc_dev.dv_xname, addr, data); return 0; } int qwx_pcic_map_service_to_pipe(struct qwx_softc *sc, uint16_t service_id, uint8_t *ul_pipe, uint8_t *dl_pipe) { const struct service_to_pipe *entry; int ul_set = 0, dl_set = 0; int i; for (i = 0; i < sc->hw_params.svc_to_ce_map_len; i++) { entry = &sc->hw_params.svc_to_ce_map[i]; if (le32toh(entry->service_id) != service_id) continue; switch (le32toh(entry->pipedir)) { case PIPEDIR_NONE: break; case PIPEDIR_IN: *dl_pipe = le32toh(entry->pipenum); dl_set = 1; break; case PIPEDIR_OUT: *ul_pipe = le32toh(entry->pipenum); ul_set = 1; break; case PIPEDIR_INOUT: *dl_pipe = le32toh(entry->pipenum); *ul_pipe = le32toh(entry->pipenum); dl_set = 1; ul_set = 1; break; } } if (!ul_set || !dl_set) { DPRINTF("%s: found no uplink and no downlink\n", __func__); return ENOENT; } return 0; } int qwx_pcic_get_user_msi_vector(struct qwx_softc *sc, char *user_name, int *num_vectors, uint32_t *user_base_data, uint32_t *base_vector) { const struct qwx_msi_config *msi_config = sc->msi_cfg; int idx; for (idx = 0; idx < msi_config->total_users; idx++) { if (strcmp(user_name, msi_config->users[idx].name) == 0) { *num_vectors = msi_config->users[idx].num_vectors; *base_vector = msi_config->users[idx].base_vector; *user_base_data = *base_vector + sc->msi_data_start; DPRINTF("%s: MSI assignment %s num_vectors %d " "user_base_data %u base_vector %u\n", __func__, user_name, *num_vectors, *user_base_data, *base_vector); return 0; } } DPRINTF("%s: Failed to find MSI assignment for %s\n", sc->sc_dev.dv_xname, user_name); return EINVAL; } void qwx_pci_attach(struct device *parent, struct device *self, void *aux) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)self; struct qwx_softc *sc = &psc->sc_sc; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint32_t soc_hw_version_major, soc_hw_version_minor; const struct qwx_pci_ops *pci_ops; struct pci_attach_args *pa = aux; pci_intr_handle_t ih; pcireg_t memtype, reg; const char *intrstr; int error; pcireg_t sreg; sc->sc_dmat = pa->pa_dmat; psc->sc_pc = pa->pa_pc; psc->sc_tag = pa->pa_tag; #ifdef __HAVE_FDT sc->sc_node = PCITAG_NODE(pa->pa_tag); #endif rw_init(&sc->ioctl_rwl, "qwxioctl"); sreg = pci_conf_read(psc->sc_pc, psc->sc_tag, PCI_SUBSYS_ID_REG); sc->id.bdf_search = ATH11K_BDF_SEARCH_DEFAULT; sc->id.vendor = PCI_VENDOR(pa->pa_id); sc->id.device = PCI_PRODUCT(pa->pa_id); sc->id.subsystem_vendor = PCI_VENDOR(sreg); sc->id.subsystem_device = PCI_PRODUCT(sreg); strlcpy(sc->sc_bus_str, "pci", sizeof(sc->sc_bus_str)); sc->ops.read32 = qwx_pcic_read32; sc->ops.write32 = qwx_pcic_write32; sc->ops.start = qwx_pci_start; sc->ops.stop = qwx_pci_stop; sc->ops.power_up = qwx_pci_power_up; sc->ops.power_down = qwx_pci_power_down; sc->ops.submit_xfer = qwx_mhi_submit_xfer; sc->ops.irq_enable = qwx_pcic_ext_irq_enable; sc->ops.irq_disable = qwx_pcic_ext_irq_disable; sc->ops.map_service_to_pipe = qwx_pcic_map_service_to_pipe; sc->ops.get_user_msi_vector = qwx_pcic_get_user_msi_vector; if (pci_get_capability(psc->sc_pc, psc->sc_tag, PCI_CAP_PCIEXPRESS, &psc->sc_cap_off, NULL) == 0) { printf(": can't find PCIe capability structure\n"); return; } if (pci_get_capability(psc->sc_pc, psc->sc_tag, PCI_CAP_MSI, &psc->sc_msi_off, &psc->sc_msi_cap) == 0) { printf(": can't find MSI capability structure\n"); return; } reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); reg |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START); if (pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0, &psc->sc_st, &psc->sc_sh, &psc->sc_map, &psc->sc_mapsize, 0)) { printf(": can't map mem space\n"); return; } sc->mem = psc->sc_map; sc->num_msivec = 32; if (pci_intr_enable_msivec(pa, sc->num_msivec) != 0) { sc->num_msivec = 1; if (pci_intr_map_msi(pa, &ih) != 0) { printf(": can't map interrupt\n"); return; } clear_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags); } else { if (pci_intr_map_msivec(pa, 0, &ih) != 0 && pci_intr_map_msi(pa, &ih) != 0) { printf(": can't map interrupt\n"); return; } set_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags); psc->mhi_irq[MHI_ER_CTRL] = 1; psc->mhi_irq[MHI_ER_DATA] = 2; } intrstr = pci_intr_string(psc->sc_pc, ih); snprintf(psc->sc_ivname[0], sizeof(psc->sc_ivname[0]), "%s:bhi", sc->sc_dev.dv_xname); psc->sc_ih[0] = pci_intr_establish(psc->sc_pc, ih, IPL_NET, qwx_pci_intr, psc, psc->sc_ivname[0]); if (psc->sc_ih[0] == NULL) { printf(": can't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s\n", intrstr); if (test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) { int msivec; msivec = psc->mhi_irq[MHI_ER_CTRL]; if (pci_intr_map_msivec(pa, msivec, &ih) != 0 && pci_intr_map_msi(pa, &ih) != 0) { printf(": can't map interrupt\n"); return; } snprintf(psc->sc_ivname[msivec], sizeof(psc->sc_ivname[msivec]), "%s:mhic", sc->sc_dev.dv_xname); psc->sc_ih[msivec] = pci_intr_establish(psc->sc_pc, ih, IPL_NET, qwx_pci_intr_mhi_ctrl, psc, psc->sc_ivname[msivec]); if (psc->sc_ih[msivec] == NULL) { printf("%s: can't establish interrupt\n", sc->sc_dev.dv_xname); return; } msivec = psc->mhi_irq[MHI_ER_DATA]; if (pci_intr_map_msivec(pa, msivec, &ih) != 0 && pci_intr_map_msi(pa, &ih) != 0) { printf(": can't map interrupt\n"); return; } snprintf(psc->sc_ivname[msivec], sizeof(psc->sc_ivname[msivec]), "%s:mhid", sc->sc_dev.dv_xname); psc->sc_ih[msivec] = pci_intr_establish(psc->sc_pc, ih, IPL_NET, qwx_pci_intr_mhi_data, psc, psc->sc_ivname[msivec]); if (psc->sc_ih[msivec] == NULL) { printf("%s: can't establish interrupt\n", sc->sc_dev.dv_xname); return; } } pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_QUALCOMM_QCA6390: qwx_pci_read_hw_version(sc, &soc_hw_version_major, &soc_hw_version_minor); switch (soc_hw_version_major) { case 2: sc->sc_hw_rev = ATH11K_HW_QCA6390_HW20; break; default: printf(": unsupported QCA6390 SOC version: %d %d\n", soc_hw_version_major, soc_hw_version_minor); return; } pci_ops = &qwx_pci_ops_qca6390; psc->max_chan = QWX_MHI_CONFIG_QCA6390_MAX_CHANNELS; break; case PCI_PRODUCT_QUALCOMM_QCN9074: pci_ops = &qwx_pci_ops_qcn9074; sc->sc_hw_rev = ATH11K_HW_QCN9074_HW10; psc->max_chan = QWX_MHI_CONFIG_QCA9074_MAX_CHANNELS; break; case PCI_PRODUCT_QUALCOMM_QCNFA765: sc->id.bdf_search = ATH11K_BDF_SEARCH_BUS_AND_BOARD; qwx_pci_read_hw_version(sc, &soc_hw_version_major, &soc_hw_version_minor); switch (soc_hw_version_major) { case 2: switch (soc_hw_version_minor) { case 0x00: case 0x01: sc->sc_hw_rev = ATH11K_HW_WCN6855_HW20; break; case 0x10: case 0x11: sc->sc_hw_rev = ATH11K_HW_WCN6855_HW21; break; default: goto unsupported_wcn6855_soc; } break; default: unsupported_wcn6855_soc: printf(": unsupported WCN6855 SOC version: %d %d\n", soc_hw_version_major, soc_hw_version_minor); return; } pci_ops = &qwx_pci_ops_qca6390; psc->max_chan = QWX_MHI_CONFIG_QCA6390_MAX_CHANNELS; break; default: printf(": unsupported chip\n"); return; } /* register PCI ops */ psc->sc_pci_ops = pci_ops; error = qwx_pcic_init_msi_config(sc); if (error) goto err_pci_free_region; error = qwx_pci_alloc_msi(sc); if (error) { printf("%s: failed to enable msi: %d\n", sc->sc_dev.dv_xname, error); goto err_pci_free_region; } error = qwx_init_hw_params(sc); if (error) goto err_pci_disable_msi; psc->chan_ctxt = qwx_dmamem_alloc(sc->sc_dmat, sizeof(struct qwx_mhi_chan_ctxt) * psc->max_chan, 0); if (psc->chan_ctxt == NULL) { printf("%s: could not allocate channel context array\n", sc->sc_dev.dv_xname); goto err_pci_disable_msi; } if (psc->sc_pci_ops->alloc_xfer_rings(psc)) { printf("%s: could not allocate transfer rings\n", sc->sc_dev.dv_xname); goto err_pci_free_chan_ctxt; } psc->event_ctxt = qwx_dmamem_alloc(sc->sc_dmat, sizeof(struct qwx_mhi_event_ctxt) * QWX_NUM_EVENT_CTX, 0); if (psc->event_ctxt == NULL) { printf("%s: could not allocate event context array\n", sc->sc_dev.dv_xname); goto err_pci_free_xfer_rings; } if (qwx_pci_alloc_event_rings(psc)) { printf("%s: could not allocate event rings\n", sc->sc_dev.dv_xname); goto err_pci_free_event_ctxt; } psc->cmd_ctxt = qwx_dmamem_alloc(sc->sc_dmat, sizeof(struct qwx_mhi_cmd_ctxt), 0); if (psc->cmd_ctxt == NULL) { printf("%s: could not allocate command context array\n", sc->sc_dev.dv_xname); goto err_pci_free_event_rings; } if (qwx_pci_init_cmd_ring(sc, &psc->cmd_ring)) { printf("%s: could not allocate command ring\n", sc->sc_dev.dv_xname); goto err_pci_free_cmd_ctxt; } error = qwx_mhi_register(sc); if (error) { printf(": failed to register mhi: %d\n", error); goto err_pci_free_cmd_ring; } error = qwx_hal_srng_init(sc); if (error) goto err_mhi_unregister; error = qwx_ce_alloc_pipes(sc); if (error) { printf(": failed to allocate ce pipes: %d\n", error); goto err_hal_srng_deinit; } sc->sc_nswq = taskq_create("qwxns", 1, IPL_NET, 0); if (sc->sc_nswq == NULL) goto err_ce_free; qwx_pci_init_qmi_ce_config(sc); error = qwx_pcic_config_irq(sc, pa); if (error) { printf("%s: failed to config irq: %d\n", sc->sc_dev.dv_xname, error); goto err_ce_free; } #if notyet ret = ath11k_pci_set_irq_affinity_hint(ab_pci, cpumask_of(0)); if (ret) { ath11k_err(ab, "failed to set irq affinity %d\n", ret); goto err_free_irq; } /* kernel may allocate a dummy vector before request_irq and * then allocate a real vector when request_irq is called. * So get msi_data here again to avoid spurious interrupt * as msi_data will configured to srngs. */ ret = ath11k_pci_config_msi_data(ab_pci); if (ret) { ath11k_err(ab, "failed to config msi_data: %d\n", ret); goto err_irq_affinity_cleanup; } #endif task_set(&psc->rddm_task, qwx_rddm_task, psc); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = #if 0 IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU | /* A-MPDU */ #endif IEEE80211_C_ADDBA_OFFLOAD | /* device sends ADDBA/DELBA frames */ IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN | /* WPA/RSN */ IEEE80211_C_SCANALL | /* device scans all channels at once */ IEEE80211_C_SCANALLBAND | /* device scans all bands at once */ #if 0 IEEE80211_C_MONITOR | /* monitor mode supported */ #endif IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE; /* short preamble supported */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* IBSS channel undefined for now. */ ic->ic_ibss_chan = &ic->ic_channels[1]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = qwx_ioctl; ifp->if_start = qwx_start; ifp->if_watchdog = qwx_watchdog; memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ieee80211_media_init(ifp, qwx_media_change, ieee80211_media_status); ic->ic_node_alloc = qwx_node_alloc; /* Override 802.11 state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = qwx_newstate; #if 0 ic->ic_updatechan = qwx_updatechan; ic->ic_updateprot = qwx_updateprot; ic->ic_updateslot = qwx_updateslot; ic->ic_updateedca = qwx_updateedca; ic->ic_updatedtim = qwx_updatedtim; #endif /* * We cannot read the MAC address without loading the * firmware from disk. Postpone until mountroot is done. */ config_mountroot(self, qwx_pci_attach_hook); return; err_ce_free: qwx_ce_free_pipes(sc); err_hal_srng_deinit: err_mhi_unregister: err_pci_free_cmd_ring: qwx_pci_free_cmd_ring(psc); err_pci_free_cmd_ctxt: qwx_dmamem_free(sc->sc_dmat, psc->cmd_ctxt); psc->cmd_ctxt = NULL; err_pci_free_event_rings: qwx_pci_free_event_rings(psc); err_pci_free_event_ctxt: qwx_dmamem_free(sc->sc_dmat, psc->event_ctxt); psc->event_ctxt = NULL; err_pci_free_xfer_rings: qwx_pci_free_xfer_rings(psc); err_pci_free_chan_ctxt: qwx_dmamem_free(sc->sc_dmat, psc->chan_ctxt); psc->chan_ctxt = NULL; err_pci_disable_msi: err_pci_free_region: pci_intr_disestablish(psc->sc_pc, psc->sc_ih[0]); return; } int qwx_pci_detach(struct device *self, int flags) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)self; struct qwx_softc *sc = &psc->sc_sc; if (psc->sc_ih[0]) { pci_intr_disestablish(psc->sc_pc, psc->sc_ih[0]); psc->sc_ih[0] = NULL; } qwx_detach(sc); qwx_pci_free_event_rings(psc); qwx_pci_free_xfer_rings(psc); qwx_pci_free_cmd_ring(psc); if (psc->event_ctxt) { qwx_dmamem_free(sc->sc_dmat, psc->event_ctxt); psc->event_ctxt = NULL; } if (psc->chan_ctxt) { qwx_dmamem_free(sc->sc_dmat, psc->chan_ctxt); psc->chan_ctxt = NULL; } if (psc->cmd_ctxt) { qwx_dmamem_free(sc->sc_dmat, psc->cmd_ctxt); psc->cmd_ctxt = NULL; } if (psc->amss_data) { qwx_dmamem_free(sc->sc_dmat, psc->amss_data); psc->amss_data = NULL; } if (psc->amss_vec) { qwx_dmamem_free(sc->sc_dmat, psc->amss_vec); psc->amss_vec = NULL; } return 0; } void qwx_pci_attach_hook(struct device *self) { struct qwx_softc *sc = (void *)self; int s = splnet(); qwx_attach(sc); splx(s); } void qwx_pci_free_xfer_rings(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int i; for (i = 0; i < nitems(psc->xfer_rings); i++) { struct qwx_pci_xfer_ring *ring = &psc->xfer_rings[i]; if (ring->dmamem) { qwx_dmamem_free(sc->sc_dmat, ring->dmamem); ring->dmamem = NULL; } memset(ring, 0, sizeof(*ring)); } } int qwx_pci_alloc_xfer_ring(struct qwx_softc *sc, struct qwx_pci_xfer_ring *ring, uint32_t id, uint32_t direction, uint32_t event_ring_index, size_t num_elements) { bus_size_t size; int i, err; memset(ring, 0, sizeof(*ring)); size = sizeof(struct qwx_mhi_ring_element) * num_elements; /* Hardware requires that rings are aligned to ring size. */ ring->dmamem = qwx_dmamem_alloc(sc->sc_dmat, size, size); if (ring->dmamem == NULL) return ENOMEM; ring->size = size; ring->mhi_chan_id = id; ring->mhi_chan_state = MHI_CH_STATE_DISABLED; ring->mhi_chan_direction = direction; ring->mhi_chan_event_ring_index = event_ring_index; ring->num_elements = num_elements; memset(ring->data, 0, sizeof(ring->data)); for (i = 0; i < ring->num_elements; i++) { struct qwx_xfer_data *xfer = &ring->data[i]; err = bus_dmamap_create(sc->sc_dmat, QWX_PCI_XFER_MAX_DATA_SIZE, 1, QWX_PCI_XFER_MAX_DATA_SIZE, 0, BUS_DMA_NOWAIT, &xfer->map); if (err) { printf("%s: could not create xfer DMA map\n", sc->sc_dev.dv_xname); goto fail; } if (direction == MHI_CHAN_TYPE_INBOUND) { struct mbuf *m; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) { err = ENOBUFS; goto fail; } MCLGETL(m, M_DONTWAIT, QWX_PCI_XFER_MAX_DATA_SIZE); if ((m->m_flags & M_EXT) == 0) { m_freem(m); err = ENOBUFS; goto fail; } m->m_len = m->m_pkthdr.len = QWX_PCI_XFER_MAX_DATA_SIZE; err = bus_dmamap_load_mbuf(sc->sc_dmat, xfer->map, m, BUS_DMA_READ | BUS_DMA_NOWAIT); if (err) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, err); m_freem(m); goto fail; } bus_dmamap_sync(sc->sc_dmat, xfer->map, 0, QWX_PCI_XFER_MAX_DATA_SIZE, BUS_DMASYNC_PREREAD); xfer->m = m; } } return 0; fail: for (i = 0; i < ring->num_elements; i++) { struct qwx_xfer_data *xfer = &ring->data[i]; if (xfer->map) { bus_dmamap_sync(sc->sc_dmat, xfer->map, 0, xfer->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, xfer->map); bus_dmamap_destroy(sc->sc_dmat, xfer->map); xfer->map = NULL; } if (xfer->m) { m_freem(xfer->m); xfer->m = NULL; } } return 1; } int qwx_pci_alloc_xfer_rings_qca6390(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int ret; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_OUTBOUND], 0, MHI_CHAN_TYPE_OUTBOUND, 0, 32); if (ret) goto fail; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_INBOUND], 1, MHI_CHAN_TYPE_INBOUND, 0, 32); if (ret) goto fail; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND], 20, MHI_CHAN_TYPE_OUTBOUND, 1, 64); if (ret) goto fail; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_INBOUND], 21, MHI_CHAN_TYPE_INBOUND, 1, 64); if (ret) goto fail; return 0; fail: qwx_pci_free_xfer_rings(psc); return ret; } int qwx_pci_alloc_xfer_rings_qcn9074(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int ret; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_OUTBOUND], 0, MHI_CHAN_TYPE_OUTBOUND, 1, 32); if (ret) goto fail; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_LOOPBACK_INBOUND], 1, MHI_CHAN_TYPE_INBOUND, 1, 32); if (ret) goto fail; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND], 20, MHI_CHAN_TYPE_OUTBOUND, 1, 32); if (ret) goto fail; ret = qwx_pci_alloc_xfer_ring(sc, &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_INBOUND], 21, MHI_CHAN_TYPE_INBOUND, 1, 32); if (ret) goto fail; return 0; fail: qwx_pci_free_xfer_rings(psc); return ret; } void qwx_pci_free_event_rings(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int i; for (i = 0; i < nitems(psc->event_rings); i++) { struct qwx_pci_event_ring *ring = &psc->event_rings[i]; if (ring->dmamem) { qwx_dmamem_free(sc->sc_dmat, ring->dmamem); ring->dmamem = NULL; } memset(ring, 0, sizeof(*ring)); } } int qwx_pci_alloc_event_ring(struct qwx_softc *sc, struct qwx_pci_event_ring *ring, uint32_t type, uint32_t irq, uint32_t intmod, size_t num_elements) { bus_size_t size; memset(ring, 0, sizeof(*ring)); size = sizeof(struct qwx_mhi_ring_element) * num_elements; /* Hardware requires that rings are aligned to ring size. */ ring->dmamem = qwx_dmamem_alloc(sc->sc_dmat, size, size); if (ring->dmamem == NULL) return ENOMEM; ring->size = size; ring->mhi_er_type = type; ring->mhi_er_irq = irq; ring->mhi_er_irq_moderation_ms = intmod; ring->num_elements = num_elements; return 0; } int qwx_pci_alloc_event_rings(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int ret; ret = qwx_pci_alloc_event_ring(sc, &psc->event_rings[0], MHI_ER_CTRL, psc->mhi_irq[MHI_ER_CTRL], 0, 32); if (ret) goto fail; ret = qwx_pci_alloc_event_ring(sc, &psc->event_rings[1], MHI_ER_DATA, psc->mhi_irq[MHI_ER_DATA], 1, 256); if (ret) goto fail; return 0; fail: qwx_pci_free_event_rings(psc); return ret; } void qwx_pci_free_cmd_ring(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_pci_cmd_ring *ring = &psc->cmd_ring; if (ring->dmamem) qwx_dmamem_free(sc->sc_dmat, ring->dmamem); memset(ring, 0, sizeof(*ring)); } int qwx_pci_init_cmd_ring(struct qwx_softc *sc, struct qwx_pci_cmd_ring *ring) { memset(ring, 0, sizeof(*ring)); ring->num_elements = QWX_PCI_CMD_RING_MAX_ELEMENTS; ring->size = sizeof(struct qwx_mhi_ring_element) * ring->num_elements; /* Hardware requires that rings are aligned to ring size. */ ring->dmamem = qwx_dmamem_alloc(sc->sc_dmat, ring->size, ring->size); if (ring->dmamem == NULL) return ENOMEM; return 0; } uint32_t qwx_pci_read(struct qwx_softc *sc, uint32_t addr) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; return (bus_space_read_4(psc->sc_st, psc->sc_sh, addr)); } void qwx_pci_write(struct qwx_softc *sc, uint32_t addr, uint32_t val) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; bus_space_write_4(psc->sc_st, psc->sc_sh, addr, val); } void qwx_pci_read_hw_version(struct qwx_softc *sc, uint32_t *major, uint32_t *minor) { uint32_t soc_hw_version; soc_hw_version = qwx_pcic_read32(sc, TCSR_SOC_HW_VERSION); *major = FIELD_GET(TCSR_SOC_HW_VERSION_MAJOR_MASK, soc_hw_version); *minor = FIELD_GET(TCSR_SOC_HW_VERSION_MINOR_MASK, soc_hw_version); DPRINTF("%s: pci tcsr_soc_hw_version major %d minor %d\n", sc->sc_dev.dv_xname, *major, *minor); } uint32_t qwx_pcic_read32(struct qwx_softc *sc, uint32_t offset) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; int ret = 0; uint32_t val; bool wakeup_required; /* for offset beyond BAR + 4K - 32, may * need to wakeup the device to access. */ wakeup_required = test_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags) && offset >= ATH11K_PCI_ACCESS_ALWAYS_OFF; if (wakeup_required && psc->sc_pci_ops->wakeup) ret = psc->sc_pci_ops->wakeup(sc); if (offset < ATH11K_PCI_WINDOW_START) val = qwx_pci_read(sc, offset); else val = psc->sc_pci_ops->window_read32(sc, offset); if (wakeup_required && !ret && psc->sc_pci_ops->release) psc->sc_pci_ops->release(sc); return val; } void qwx_pcic_write32(struct qwx_softc *sc, uint32_t offset, uint32_t value) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; int ret = 0; bool wakeup_required; /* for offset beyond BAR + 4K - 32, may * need to wakeup the device to access. */ wakeup_required = test_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags) && offset >= ATH11K_PCI_ACCESS_ALWAYS_OFF; if (wakeup_required && psc->sc_pci_ops->wakeup) ret = psc->sc_pci_ops->wakeup(sc); if (offset < ATH11K_PCI_WINDOW_START) qwx_pci_write(sc, offset, value); else psc->sc_pci_ops->window_write32(sc, offset, value); if (wakeup_required && !ret && psc->sc_pci_ops->release) psc->sc_pci_ops->release(sc); } void qwx_pcic_ext_irq_disable(struct qwx_softc *sc) { clear_bit(ATH11K_FLAG_EXT_IRQ_ENABLED, sc->sc_flags); /* In case of one MSI vector, we handle irq enable/disable in a * uniform way since we only have one irq */ if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return; DPRINTF("%s not implemented\n", __func__); } void qwx_pcic_ext_irq_enable(struct qwx_softc *sc) { set_bit(ATH11K_FLAG_EXT_IRQ_ENABLED, sc->sc_flags); /* In case of one MSI vector, we handle irq enable/disable in a * uniform way since we only have one irq */ if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return; DPRINTF("%s not implemented\n", __func__); } void qwx_pcic_ce_irq_enable(struct qwx_softc *sc, uint16_t ce_id) { /* In case of one MSI vector, we handle irq enable/disable in a * uniform way since we only have one irq */ if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return; /* OpenBSD PCI stack does not yet implement MSI interrupt masking. */ sc->msi_ce_irqmask |= (1U << ce_id); } void qwx_pcic_ce_irq_disable(struct qwx_softc *sc, uint16_t ce_id) { /* In case of one MSI vector, we handle irq enable/disable in a * uniform way since we only have one irq */ if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return; /* OpenBSD PCI stack does not yet implement MSI interrupt masking. */ sc->msi_ce_irqmask &= ~(1U << ce_id); } void qwx_pcic_ext_grp_disable(struct qwx_ext_irq_grp *irq_grp) { struct qwx_softc *sc = irq_grp->sc; /* In case of one MSI vector, we handle irq enable/disable * in a uniform way since we only have one irq */ if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return; } int qwx_pcic_ext_irq_config(struct qwx_softc *sc, struct pci_attach_args *pa) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; int i, ret, num_vectors = 0; uint32_t msi_data_start = 0; uint32_t base_vector = 0; if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return 0; ret = qwx_pcic_get_user_msi_vector(sc, "DP", &num_vectors, &msi_data_start, &base_vector); if (ret < 0) return ret; for (i = 0; i < nitems(sc->ext_irq_grp); i++) { struct qwx_ext_irq_grp *irq_grp = &sc->ext_irq_grp[i]; uint32_t num_irq = 0; irq_grp->sc = sc; irq_grp->grp_id = i; #if 0 init_dummy_netdev(&irq_grp->napi_ndev); netif_napi_add(&irq_grp->napi_ndev, &irq_grp->napi, ath11k_pcic_ext_grp_napi_poll); #endif if (sc->hw_params.ring_mask->tx[i] || sc->hw_params.ring_mask->rx[i] || sc->hw_params.ring_mask->rx_err[i] || sc->hw_params.ring_mask->rx_wbm_rel[i] || sc->hw_params.ring_mask->reo_status[i] || sc->hw_params.ring_mask->rxdma2host[i] || sc->hw_params.ring_mask->host2rxdma[i] || sc->hw_params.ring_mask->rx_mon_status[i]) { num_irq = 1; } irq_grp->num_irq = num_irq; irq_grp->irqs[0] = ATH11K_PCI_IRQ_DP_OFFSET + i; if (num_irq) { int irq_idx = irq_grp->irqs[0]; pci_intr_handle_t ih; if (pci_intr_map_msivec(pa, irq_idx, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { printf("%s: can't map interrupt\n", sc->sc_dev.dv_xname); return EIO; } snprintf(psc->sc_ivname[irq_idx], sizeof(psc->sc_ivname[0]), "%s:ex%d", sc->sc_dev.dv_xname, i); psc->sc_ih[irq_idx] = pci_intr_establish(psc->sc_pc, ih, IPL_NET, qwx_ext_intr, irq_grp, psc->sc_ivname[irq_idx]); if (psc->sc_ih[irq_idx] == NULL) { printf("%s: failed to request irq %d\n", sc->sc_dev.dv_xname, irq_idx); return EIO; } } qwx_pcic_ext_grp_disable(irq_grp); } return 0; } int qwx_pcic_config_irq(struct qwx_softc *sc, struct pci_attach_args *pa) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; struct qwx_ce_pipe *ce_pipe; uint32_t msi_data_start; uint32_t msi_data_count, msi_data_idx; uint32_t msi_irq_start; int i, ret, irq_idx; pci_intr_handle_t ih; if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) return 0; ret = qwx_pcic_get_user_msi_vector(sc, "CE", &msi_data_count, &msi_data_start, &msi_irq_start); if (ret) return ret; /* Configure CE irqs */ for (i = 0, msi_data_idx = 0; i < sc->hw_params.ce_count; i++) { if (qwx_ce_get_attr_flags(sc, i) & CE_ATTR_DIS_INTR) continue; ce_pipe = &sc->ce.ce_pipe[i]; irq_idx = ATH11K_PCI_IRQ_CE0_OFFSET + i; if (pci_intr_map_msivec(pa, irq_idx, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { printf("%s: can't map interrupt\n", sc->sc_dev.dv_xname); return EIO; } snprintf(psc->sc_ivname[irq_idx], sizeof(psc->sc_ivname[0]), "%s:ce%d", sc->sc_dev.dv_xname, ce_pipe->pipe_num); psc->sc_ih[irq_idx] = pci_intr_establish(psc->sc_pc, ih, IPL_NET, qwx_ce_intr, ce_pipe, psc->sc_ivname[irq_idx]); if (psc->sc_ih[irq_idx] == NULL) { printf("%s: failed to request irq %d\n", sc->sc_dev.dv_xname, irq_idx); return EIO; } msi_data_idx++; qwx_pcic_ce_irq_disable(sc, i); } ret = qwx_pcic_ext_irq_config(sc, pa); if (ret) return ret; return 0; } void qwx_pcic_ce_irqs_enable(struct qwx_softc *sc) { int i; set_bit(ATH11K_FLAG_CE_IRQ_ENABLED, sc->sc_flags); for (i = 0; i < sc->hw_params.ce_count; i++) { if (qwx_ce_get_attr_flags(sc, i) & CE_ATTR_DIS_INTR) continue; qwx_pcic_ce_irq_enable(sc, i); } } void qwx_pcic_ce_irqs_disable(struct qwx_softc *sc) { int i; clear_bit(ATH11K_FLAG_CE_IRQ_ENABLED, sc->sc_flags); for (i = 0; i < sc->hw_params.ce_count; i++) { if (qwx_ce_get_attr_flags(sc, i) & CE_ATTR_DIS_INTR) continue; qwx_pcic_ce_irq_disable(sc, i); } } int qwx_pci_start(struct qwx_softc *sc) { /* TODO: for now don't restore ASPM in case of single MSI * vector as MHI register reading in M2 causes system hang. */ if (test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) qwx_pci_aspm_restore(sc); else DPRINTF("%s: leaving PCI ASPM disabled to avoid MHI M2 problems" "\n", sc->sc_dev.dv_xname); set_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags); qwx_ce_rx_post_buf(sc); qwx_pcic_ce_irqs_enable(sc); return 0; } void qwx_pcic_ce_irq_disable_sync(struct qwx_softc *sc) { qwx_pcic_ce_irqs_disable(sc); #if 0 ath11k_pcic_sync_ce_irqs(ab); ath11k_pcic_kill_tasklets(ab); #endif } void qwx_pci_stop(struct qwx_softc *sc) { qwx_pcic_ce_irq_disable_sync(sc); qwx_ce_cleanup_pipes(sc); } int qwx_pci_bus_wake_up(struct qwx_softc *sc) { if (qwx_mhi_wake_db_clear_valid(sc)) qwx_mhi_device_wake(sc); return 0; } void qwx_pci_bus_release(struct qwx_softc *sc) { if (qwx_mhi_wake_db_clear_valid(sc)) qwx_mhi_device_zzz(sc); } uint32_t qwx_pci_get_window_start(struct qwx_softc *sc, uint32_t offset) { if (!sc->hw_params.static_window_map) return ATH11K_PCI_WINDOW_START; if ((offset ^ HAL_SEQ_WCSS_UMAC_OFFSET) < ATH11K_PCI_WINDOW_RANGE_MASK) /* if offset lies within DP register range, use 3rd window */ return 3 * ATH11K_PCI_WINDOW_START; else if ((offset ^ HAL_SEQ_WCSS_UMAC_CE0_SRC_REG(sc)) < ATH11K_PCI_WINDOW_RANGE_MASK) /* if offset lies within CE register range, use 2nd window */ return 2 * ATH11K_PCI_WINDOW_START; else return ATH11K_PCI_WINDOW_START; } void qwx_pci_select_window(struct qwx_softc *sc, uint32_t offset) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; uint32_t window = FIELD_GET(ATH11K_PCI_WINDOW_VALUE_MASK, offset); #if notyet lockdep_assert_held(&ab_pci->window_lock); #endif if (window != psc->register_window) { qwx_pci_write(sc, ATH11K_PCI_WINDOW_REG_ADDRESS, ATH11K_PCI_WINDOW_ENABLE_BIT | window); (void) qwx_pci_read(sc, ATH11K_PCI_WINDOW_REG_ADDRESS); psc->register_window = window; } } void qwx_pci_window_write32(struct qwx_softc *sc, uint32_t offset, uint32_t value) { uint32_t window_start; window_start = qwx_pci_get_window_start(sc, offset); if (window_start == ATH11K_PCI_WINDOW_START) { #if notyet spin_lock_bh(&ab_pci->window_lock); #endif qwx_pci_select_window(sc, offset); qwx_pci_write(sc, window_start + (offset & ATH11K_PCI_WINDOW_RANGE_MASK), value); #if notyet spin_unlock_bh(&ab_pci->window_lock); #endif } else { qwx_pci_write(sc, window_start + (offset & ATH11K_PCI_WINDOW_RANGE_MASK), value); } } uint32_t qwx_pci_window_read32(struct qwx_softc *sc, uint32_t offset) { uint32_t window_start, val; window_start = qwx_pci_get_window_start(sc, offset); if (window_start == ATH11K_PCI_WINDOW_START) { #if notyet spin_lock_bh(&ab_pci->window_lock); #endif qwx_pci_select_window(sc, offset); val = qwx_pci_read(sc, window_start + (offset & ATH11K_PCI_WINDOW_RANGE_MASK)); #if notyet spin_unlock_bh(&ab_pci->window_lock); #endif } else { val = qwx_pci_read(sc, window_start + (offset & ATH11K_PCI_WINDOW_RANGE_MASK)); } return val; } void qwx_pci_select_static_window(struct qwx_softc *sc) { uint32_t umac_window; uint32_t ce_window; uint32_t window; umac_window = FIELD_GET(ATH11K_PCI_WINDOW_VALUE_MASK, HAL_SEQ_WCSS_UMAC_OFFSET); ce_window = FIELD_GET(ATH11K_PCI_WINDOW_VALUE_MASK, HAL_CE_WFSS_CE_REG_BASE); window = (umac_window << 12) | (ce_window << 6); qwx_pci_write(sc, ATH11K_PCI_WINDOW_REG_ADDRESS, ATH11K_PCI_WINDOW_ENABLE_BIT | window); } void qwx_pci_soc_global_reset(struct qwx_softc *sc) { uint32_t val, msecs; val = qwx_pcic_read32(sc, PCIE_SOC_GLOBAL_RESET); val |= PCIE_SOC_GLOBAL_RESET_V; qwx_pcic_write32(sc, PCIE_SOC_GLOBAL_RESET, val); /* TODO: exact time to sleep is uncertain */ msecs = 10; DELAY(msecs * 1000); /* Need to toggle V bit back otherwise stuck in reset status */ val &= ~PCIE_SOC_GLOBAL_RESET_V; qwx_pcic_write32(sc, PCIE_SOC_GLOBAL_RESET, val); DELAY(msecs * 1000); val = qwx_pcic_read32(sc, PCIE_SOC_GLOBAL_RESET); if (val == 0xffffffff) printf("%s: link down error during global reset\n", sc->sc_dev.dv_xname); } void qwx_pci_clear_dbg_registers(struct qwx_softc *sc) { uint32_t val; /* read cookie */ val = qwx_pcic_read32(sc, PCIE_Q6_COOKIE_ADDR); DPRINTF("%s: cookie:0x%x\n", sc->sc_dev.dv_xname, val); val = qwx_pcic_read32(sc, WLAON_WARM_SW_ENTRY); DPRINTF("%s: WLAON_WARM_SW_ENTRY 0x%x\n", sc->sc_dev.dv_xname, val); /* TODO: exact time to sleep is uncertain */ DELAY(10 * 1000); /* write 0 to WLAON_WARM_SW_ENTRY to prevent Q6 from * continuing warm path and entering dead loop. */ qwx_pcic_write32(sc, WLAON_WARM_SW_ENTRY, 0); DELAY(10 * 1000); val = qwx_pcic_read32(sc, WLAON_WARM_SW_ENTRY); DPRINTF("%s: WLAON_WARM_SW_ENTRY 0x%x\n", sc->sc_dev.dv_xname, val); /* A read clear register. clear the register to prevent * Q6 from entering wrong code path. */ val = qwx_pcic_read32(sc, WLAON_SOC_RESET_CAUSE_REG); DPRINTF("%s: soc reset cause:%d\n", sc->sc_dev.dv_xname, val); } int qwx_pci_set_link_reg(struct qwx_softc *sc, uint32_t offset, uint32_t value, uint32_t mask) { uint32_t v; int i; v = qwx_pcic_read32(sc, offset); if ((v & mask) == value) return 0; for (i = 0; i < 10; i++) { qwx_pcic_write32(sc, offset, (v & ~mask) | value); v = qwx_pcic_read32(sc, offset); if ((v & mask) == value) return 0; delay((2 * 1000)); } DPRINTF("failed to set pcie link register 0x%08x: 0x%08x != 0x%08x\n", offset, v & mask, value); return ETIMEDOUT; } int qwx_pci_fix_l1ss(struct qwx_softc *sc) { int ret; ret = qwx_pci_set_link_reg(sc, PCIE_QSERDES_COM_SYSCLK_EN_SEL_REG(sc), PCIE_QSERDES_COM_SYSCLK_EN_SEL_VAL, PCIE_QSERDES_COM_SYSCLK_EN_SEL_MSK); if (ret) { DPRINTF("failed to set sysclk: %d\n", ret); return ret; } ret = qwx_pci_set_link_reg(sc, PCIE_PCS_OSC_DTCT_CONFIG1_REG(sc), PCIE_PCS_OSC_DTCT_CONFIG1_VAL, PCIE_PCS_OSC_DTCT_CONFIG_MSK); if (ret) { DPRINTF("failed to set dtct config1 error: %d\n", ret); return ret; } ret = qwx_pci_set_link_reg(sc, PCIE_PCS_OSC_DTCT_CONFIG2_REG(sc), PCIE_PCS_OSC_DTCT_CONFIG2_VAL, PCIE_PCS_OSC_DTCT_CONFIG_MSK); if (ret) { DPRINTF("failed to set dtct config2: %d\n", ret); return ret; } ret = qwx_pci_set_link_reg(sc, PCIE_PCS_OSC_DTCT_CONFIG4_REG(sc), PCIE_PCS_OSC_DTCT_CONFIG4_VAL, PCIE_PCS_OSC_DTCT_CONFIG_MSK); if (ret) { DPRINTF("failed to set dtct config4: %d\n", ret); return ret; } return 0; } void qwx_pci_enable_ltssm(struct qwx_softc *sc) { uint32_t val; int i; val = qwx_pcic_read32(sc, PCIE_PCIE_PARF_LTSSM); /* PCIE link seems very unstable after the Hot Reset*/ for (i = 0; val != PARM_LTSSM_VALUE && i < 5; i++) { if (val == 0xffffffff) DELAY(5 * 1000); qwx_pcic_write32(sc, PCIE_PCIE_PARF_LTSSM, PARM_LTSSM_VALUE); val = qwx_pcic_read32(sc, PCIE_PCIE_PARF_LTSSM); } DPRINTF("%s: pci ltssm 0x%x\n", sc->sc_dev.dv_xname, val); val = qwx_pcic_read32(sc, GCC_GCC_PCIE_HOT_RST); val |= GCC_GCC_PCIE_HOT_RST_VAL; qwx_pcic_write32(sc, GCC_GCC_PCIE_HOT_RST, val); val = qwx_pcic_read32(sc, GCC_GCC_PCIE_HOT_RST); DPRINTF("%s: pci pcie_hot_rst 0x%x\n", sc->sc_dev.dv_xname, val); DELAY(5 * 1000); } void qwx_pci_clear_all_intrs(struct qwx_softc *sc) { /* This is a WAR for PCIE Hotreset. * When target receive Hotreset, but will set the interrupt. * So when download SBL again, SBL will open Interrupt and * receive it, and crash immediately. */ qwx_pcic_write32(sc, PCIE_PCIE_INT_ALL_CLEAR, PCIE_INT_CLEAR_ALL); } void qwx_pci_set_wlaon_pwr_ctrl(struct qwx_softc *sc) { uint32_t val; val = qwx_pcic_read32(sc, WLAON_QFPROM_PWR_CTRL_REG); val &= ~QFPROM_PWR_CTRL_VDD4BLOW_MASK; qwx_pcic_write32(sc, WLAON_QFPROM_PWR_CTRL_REG, val); } void qwx_pci_force_wake(struct qwx_softc *sc) { qwx_pcic_write32(sc, PCIE_SOC_WAKE_PCIE_LOCAL_REG, 1); DELAY(5 * 1000); } void qwx_pci_sw_reset(struct qwx_softc *sc, bool power_on) { DELAY(100 * 1000); /* msecs */ if (power_on) { qwx_pci_enable_ltssm(sc); qwx_pci_clear_all_intrs(sc); qwx_pci_set_wlaon_pwr_ctrl(sc); if (sc->hw_params.fix_l1ss) qwx_pci_fix_l1ss(sc); } qwx_mhi_clear_vector(sc); qwx_pci_clear_dbg_registers(sc); qwx_pci_soc_global_reset(sc); qwx_mhi_reset_device(sc, 0); } void qwx_pci_msi_config(struct qwx_softc *sc, bool enable) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; uint32_t val; val = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MC); if (enable) val |= PCI_MSI_MC_MSIE; else val &= ~PCI_MSI_MC_MSIE; pci_conf_write(psc->sc_pc, psc->sc_tag, psc->sc_msi_off + PCI_MSI_MC, val); } void qwx_pci_msi_enable(struct qwx_softc *sc) { qwx_pci_msi_config(sc, true); } void qwx_pci_msi_disable(struct qwx_softc *sc) { qwx_pci_msi_config(sc, false); } void qwx_pci_aspm_disable(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; psc->sc_lcsr = pci_conf_read(psc->sc_pc, psc->sc_tag, psc->sc_cap_off + PCI_PCIE_LCSR); DPRINTF("%s: pci link_ctl 0x%04x L0s %d L1 %d\n", sc->sc_dev.dv_xname, (uint16_t)psc->sc_lcsr, (psc->sc_lcsr & PCI_PCIE_LCSR_ASPM_L0S), (psc->sc_lcsr & PCI_PCIE_LCSR_ASPM_L1)); /* disable L0s and L1 */ pci_conf_write(psc->sc_pc, psc->sc_tag, psc->sc_cap_off + PCI_PCIE_LCSR, psc->sc_lcsr & ~(PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1)); psc->sc_flags |= ATH11K_PCI_ASPM_RESTORE; } void qwx_pci_aspm_restore(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; if (psc->sc_flags & ATH11K_PCI_ASPM_RESTORE) { pci_conf_write(psc->sc_pc, psc->sc_tag, psc->sc_cap_off + PCI_PCIE_LCSR, psc->sc_lcsr); psc->sc_flags &= ~ATH11K_PCI_ASPM_RESTORE; } } int qwx_pci_power_up(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; int error; psc->register_window = 0; clear_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags); qwx_pci_sw_reset(sc, true); /* Disable ASPM during firmware download due to problems switching * to AMSS state. */ qwx_pci_aspm_disable(sc); qwx_pci_msi_enable(sc); error = qwx_mhi_start(psc); if (error) return error; if (sc->hw_params.static_window_map) qwx_pci_select_static_window(sc); return 0; } void qwx_pci_power_down(struct qwx_softc *sc) { /* restore aspm in case firmware bootup fails */ qwx_pci_aspm_restore(sc); qwx_pci_force_wake(sc); qwx_pci_msi_disable(sc); qwx_mhi_stop(sc); clear_bit(ATH11K_FLAG_DEVICE_INIT_DONE, sc->sc_flags); qwx_pci_sw_reset(sc, false); } /* * MHI */ int qwx_mhi_register(struct qwx_softc *sc) { DNPRINTF(QWX_D_MHI, "%s: STUB %s()\n", sc->sc_dev.dv_xname, __func__); return 0; } void qwx_mhi_unregister(struct qwx_softc *sc) { DNPRINTF(QWX_D_MHI, "%s: STUB %s()\n", sc->sc_dev.dv_xname, __func__); } // XXX MHI is GPLd - we provide a compatible bare-bones implementation #define MHI_CFG 0x10 #define MHI_CFG_NHWER_MASK GENMASK(31, 24) #define MHI_CFG_NHWER_SHFT 24 #define MHI_CFG_NER_MASK GENMASK(23, 16) #define MHI_CFG_NER_SHFT 16 #define MHI_CFG_NHWCH_MASK GENMASK(15, 8) #define MHI_CFG_NHWCH_SHFT 8 #define MHI_CFG_NCH_MASK GENMASK(7, 0) #define MHI_CHDBOFF 0x18 #define MHI_DEV_WAKE_DB 127 #define MHI_ERDBOFF 0x20 #define MHI_BHI_OFFSET 0x28 #define MHI_BHI_IMGADDR_LOW 0x08 #define MHI_BHI_IMGADDR_HIGH 0x0c #define MHI_BHI_IMGSIZE 0x10 #define MHI_BHI_IMGTXDB 0x18 #define MHI_BHI_INTVEC 0x20 #define MHI_BHI_EXECENV 0x28 #define MHI_BHI_STATUS 0x2c #define MHI_BHI_SERIALNU 0x40 #define MHI_BHIE_OFFSET 0x2c #define MHI_BHIE_TXVECADDR_LOW_OFFS 0x2c #define MHI_BHIE_TXVECADDR_HIGH_OFFS 0x30 #define MHI_BHIE_TXVECSIZE_OFFS 0x34 #define MHI_BHIE_TXVECDB_OFFS 0x3c #define MHI_BHIE_TXVECSTATUS_OFFS 0x44 #define MHI_BHIE_RXVECADDR_LOW_OFFS 0x60 #define MHI_BHIE_RXVECSTATUS_OFFS 0x78 #define MHI_CTRL 0x38 #define MHI_CTRL_READY_MASK 0x1 #define MHI_CTRL_RESET_MASK 0x2 #define MHI_CTRL_MHISTATE_MASK GENMASK(15, 8) #define MHI_CTRL_MHISTATE_SHFT 8 #define MHI_STATUS 0x48 #define MHI_STATUS_MHISTATE_MASK GENMASK(15, 8) #define MHI_STATUS_MHISTATE_SHFT 8 #define MHI_STATE_RESET 0x0 #define MHI_STATE_READY 0x1 #define MHI_STATE_M0 0x2 #define MHI_STATE_M1 0x3 #define MHI_STATE_M2 0x4 #define MHI_STATE_M3 0x5 #define MHI_STATE_M3_FAST 0x6 #define MHI_STATE_BHI 0x7 #define MHI_STATE_SYS_ERR 0xff #define MHI_STATUS_READY_MASK 0x1 #define MHI_STATUS_SYSERR_MASK 0x4 #define MHI_CCABAP_LOWER 0x58 #define MHI_CCABAP_HIGHER 0x5c #define MHI_ECABAP_LOWER 0x60 #define MHI_ECABAP_HIGHER 0x64 #define MHI_CRCBAP_LOWER 0x68 #define MHI_CRCBAP_HIGHER 0x6c #define MHI_CRDB_LOWER 0x70 #define MHI_CRDB_HIGHER 0x74 #define MHI_CTRLBASE_LOWER 0x80 #define MHI_CTRLBASE_HIGHER 0x84 #define MHI_CTRLLIMIT_LOWER 0x88 #define MHI_CTRLLIMIT_HIGHER 0x8c #define MHI_DATABASE_LOWER 0x98 #define MHI_DATABASE_HIGHER 0x9c #define MHI_DATALIMIT_LOWER 0xa0 #define MHI_DATALIMIT_HIGHER 0xa4 #define MHI_EE_PBL 0x0 /* Primary Bootloader */ #define MHI_EE_SBL 0x1 /* Secondary Bootloader */ #define MHI_EE_AMSS 0x2 /* Modem, aka the primary runtime EE */ #define MHI_EE_RDDM 0x3 /* Ram dump download mode */ #define MHI_EE_WFW 0x4 /* WLAN firmware mode */ #define MHI_EE_PTHRU 0x5 /* Passthrough */ #define MHI_EE_EDL 0x6 /* Embedded downloader */ #define MHI_EE_FP 0x7 /* Flash Programmer Environment */ #define MHI_IN_PBL(e) (e == MHI_EE_PBL || e == MHI_EE_PTHRU || e == MHI_EE_EDL) #define MHI_POWER_UP_CAPABLE(e) (MHI_IN_PBL(e) || e == MHI_EE_AMSS) #define MHI_IN_MISSION_MODE(e) \ (e == MHI_EE_AMSS || e == MHI_EE_WFW || e == MHI_EE_FP) /* BHI register bits */ #define MHI_BHI_TXDB_SEQNUM_BMSK GENMASK(29, 0) #define MHI_BHI_TXDB_SEQNUM_SHFT 0 #define MHI_BHI_STATUS_MASK GENMASK(31, 30) #define MHI_BHI_STATUS_SHFT 30 #define MHI_BHI_STATUS_ERROR 0x03 #define MHI_BHI_STATUS_SUCCESS 0x02 #define MHI_BHI_STATUS_RESET 0x00 /* MHI BHIE registers */ #define MHI_BHIE_MSMSOCID_OFFS 0x00 #define MHI_BHIE_RXVECADDR_LOW_OFFS 0x60 #define MHI_BHIE_RXVECADDR_HIGH_OFFS 0x64 #define MHI_BHIE_RXVECSIZE_OFFS 0x68 #define MHI_BHIE_RXVECDB_OFFS 0x70 #define MHI_BHIE_RXVECSTATUS_OFFS 0x78 /* BHIE register bits */ #define MHI_BHIE_TXVECDB_SEQNUM_BMSK GENMASK(29, 0) #define MHI_BHIE_TXVECDB_SEQNUM_SHFT 0 #define MHI_BHIE_TXVECSTATUS_SEQNUM_BMSK GENMASK(29, 0) #define MHI_BHIE_TXVECSTATUS_SEQNUM_SHFT 0 #define MHI_BHIE_TXVECSTATUS_STATUS_BMSK GENMASK(31, 30) #define MHI_BHIE_TXVECSTATUS_STATUS_SHFT 30 #define MHI_BHIE_TXVECSTATUS_STATUS_RESET 0x00 #define MHI_BHIE_TXVECSTATUS_STATUS_XFER_COMPL 0x02 #define MHI_BHIE_TXVECSTATUS_STATUS_ERROR 0x03 #define MHI_BHIE_RXVECDB_SEQNUM_BMSK GENMASK(29, 0) #define MHI_BHIE_RXVECDB_SEQNUM_SHFT 0 #define MHI_BHIE_RXVECSTATUS_SEQNUM_BMSK GENMASK(29, 0) #define MHI_BHIE_RXVECSTATUS_SEQNUM_SHFT 0 #define MHI_BHIE_RXVECSTATUS_STATUS_BMSK GENMASK(31, 30) #define MHI_BHIE_RXVECSTATUS_STATUS_SHFT 30 #define MHI_BHIE_RXVECSTATUS_STATUS_RESET 0x00 #define MHI_BHIE_RXVECSTATUS_STATUS_XFER_COMPL 0x02 #define MHI_BHIE_RXVECSTATUS_STATUS_ERROR 0x03 #define MHI_EV_CC_INVALID 0x0 #define MHI_EV_CC_SUCCESS 0x1 #define MHI_EV_CC_EOT 0x2 #define MHI_EV_CC_OVERFLOW 0x3 #define MHI_EV_CC_EOB 0x4 #define MHI_EV_CC_OOB 0x5 #define MHI_EV_CC_DB_MODE 0x6 #define MHI_EV_CC_UNDEFINED_ERR 0x10 #define MHI_EV_CC_BAD_TRE 0x11 #define MHI_CMD_NOP 01 #define MHI_CMD_RESET_CHAN 16 #define MHI_CMD_STOP_CHAN 17 #define MHI_CMD_START_CHAN 18 #define MHI_TRE_CMD_CHID_MASK GENMASK(31, 24) #define MHI_TRE_CMD_CHID_SHFT 24 #define MHI_TRE_CMD_CMDID_MASK GENMASK(23, 16) #define MHI_TRE_CMD_CMDID_SHFT 16 #define MHI_TRE0_EV_LEN_MASK GENMASK(15, 0) #define MHI_TRE0_EV_LEN_SHFT 0 #define MHI_TRE0_EV_CODE_MASK GENMASK(31, 24) #define MHI_TRE0_EV_CODE_SHFT 24 #define MHI_TRE1_EV_TYPE_MASK GENMASK(23, 16) #define MHI_TRE1_EV_TYPE_SHFT 16 #define MHI_TRE1_EV_CHID_MASK GENMASK(31, 24) #define MHI_TRE1_EV_CHID_SHFT 24 #define MHI_TRE0_DATA_LEN_MASK GENMASK(15, 0) #define MHI_TRE0_DATA_LEN_SHFT 0 #define MHI_TRE1_DATA_CHAIN (1 << 0) #define MHI_TRE1_DATA_IEOB (1 << 8) #define MHI_TRE1_DATA_IEOT (1 << 9) #define MHI_TRE1_DATA_BEI (1 << 10) #define MHI_TRE1_DATA_TYPE_MASK GENMASK(23, 16) #define MHI_TRE1_DATA_TYPE_SHIFT 16 #define MHI_TRE1_DATA_TYPE_TRANSFER 0x2 #define MHI_PKT_TYPE_INVALID 0x00 #define MHI_PKT_TYPE_NOOP_CMD 0x01 #define MHI_PKT_TYPE_TRANSFER 0x02 #define MHI_PKT_TYPE_COALESCING 0x08 #define MHI_PKT_TYPE_RESET_CHAN_CMD 0x10 #define MHI_PKT_TYPE_STOP_CHAN_CMD 0x11 #define MHI_PKT_TYPE_START_CHAN_CMD 0x12 #define MHI_PKT_TYPE_STATE_CHANGE_EVENT 0x20 #define MHI_PKT_TYPE_CMD_COMPLETION_EVENT 0x21 #define MHI_PKT_TYPE_TX_EVENT 0x22 #define MHI_PKT_TYPE_RSC_TX_EVENT 0x28 #define MHI_PKT_TYPE_EE_EVENT 0x40 #define MHI_PKT_TYPE_TSYNC_EVENT 0x48 #define MHI_PKT_TYPE_BW_REQ_EVENT 0x50 #define MHI_DMA_VEC_CHUNK_SIZE 524288 /* 512 KB */ struct qwx_dma_vec_entry { uint64_t paddr; uint64_t size; }; void qwx_mhi_ring_doorbell(struct qwx_softc *sc, uint64_t db_addr, uint64_t val) { qwx_pci_write(sc, db_addr + 4, val >> 32); qwx_pci_write(sc, db_addr, val & 0xffffffff); } void qwx_mhi_device_wake(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; /* * Device wake is async only for now because we do not * keep track of PM state in software. */ qwx_mhi_ring_doorbell(sc, psc->wake_db, 1); } void qwx_mhi_device_zzz(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; qwx_mhi_ring_doorbell(sc, psc->wake_db, 0); } int qwx_mhi_wake_db_clear_valid(struct qwx_softc *sc) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; return (psc->mhi_state == MHI_STATE_M0); /* TODO other states? */ } void qwx_mhi_init_xfer_rings(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int i; uint32_t chcfg; struct qwx_pci_xfer_ring *ring; struct qwx_mhi_chan_ctxt *cbase, *c; cbase = (struct qwx_mhi_chan_ctxt *)QWX_DMA_KVA(psc->chan_ctxt); for (i = 0; i < psc->max_chan; i++) { c = &cbase[i]; chcfg = le32toh(c->chcfg); chcfg &= ~(MHI_CHAN_CTX_CHSTATE_MASK | MHI_CHAN_CTX_BRSTMODE_MASK | MHI_CHAN_CTX_POLLCFG_MASK); chcfg |= (MHI_CHAN_CTX_CHSTATE_DISABLED | (MHI_CHAN_CTX_BRSTMODE_DISABLE << MHI_CHAN_CTX_BRSTMODE_SHFT)); c->chcfg = htole32(chcfg); c->chtype = htole32(MHI_CHAN_TYPE_INVALID); c->erindex = 0; } for (i = 0; i < nitems(psc->xfer_rings); i++) { ring = &psc->xfer_rings[i]; KASSERT(ring->mhi_chan_id < psc->max_chan); c = &cbase[ring->mhi_chan_id]; c->chtype = htole32(ring->mhi_chan_direction); c->erindex = htole32(ring->mhi_chan_event_ring_index); ring->chan_ctxt = c; } bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0, QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE); } void qwx_mhi_init_event_rings(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int i; uint32_t intmod; uint64_t paddr, len; struct qwx_pci_event_ring *ring; struct qwx_mhi_event_ctxt *c; c = (struct qwx_mhi_event_ctxt *)QWX_DMA_KVA(psc->event_ctxt); for (i = 0; i < nitems(psc->event_rings); i++, c++) { ring = &psc->event_rings[i]; ring->event_ctxt = c; intmod = le32toh(c->intmod); intmod &= ~(MHI_EV_CTX_INTMODC_MASK | MHI_EV_CTX_INTMODT_MASK); intmod |= (ring->mhi_er_irq_moderation_ms << MHI_EV_CTX_INTMODT_SHFT) & MHI_EV_CTX_INTMODT_MASK; c->intmod = htole32(intmod); c->ertype = htole32(MHI_ER_TYPE_VALID); c->msivec = htole32(ring->mhi_er_irq); paddr = QWX_DMA_DVA(ring->dmamem); ring->rp = paddr; ring->wp = paddr + ring->size - sizeof(struct qwx_mhi_ring_element); c->rbase = htole64(paddr); c->rp = htole64(ring->rp); c->wp = htole64(ring->wp); len = sizeof(struct qwx_mhi_ring_element) * ring->num_elements; c->rlen = htole64(len); } bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0, QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_PREWRITE); } void qwx_mhi_init_cmd_ring(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_pci_cmd_ring *ring = &psc->cmd_ring; struct qwx_mhi_cmd_ctxt *c; uint64_t paddr, len; paddr = QWX_DMA_DVA(ring->dmamem); len = ring->size; ring->rp = ring->wp = paddr; c = (struct qwx_mhi_cmd_ctxt *)QWX_DMA_KVA(psc->cmd_ctxt); c->rbase = htole64(paddr); c->rp = htole64(paddr); c->wp = htole64(paddr); c->rlen = htole64(len); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->cmd_ctxt), 0, QWX_DMA_LEN(psc->cmd_ctxt), BUS_DMASYNC_PREWRITE); } void qwx_mhi_init_dev_ctxt(struct qwx_pci_softc *psc) { qwx_mhi_init_xfer_rings(psc); qwx_mhi_init_event_rings(psc); qwx_mhi_init_cmd_ring(psc); } void * qwx_pci_cmd_ring_get_elem(struct qwx_pci_cmd_ring *ring, uint64_t ptr) { uint64_t base = QWX_DMA_DVA(ring->dmamem), offset; if (ptr < base || ptr >= base + ring->size) return NULL; offset = ptr - base; if (offset >= ring->size) return NULL; return QWX_DMA_KVA(ring->dmamem) + offset; } int qwx_mhi_cmd_ring_submit(struct qwx_pci_softc *psc, struct qwx_pci_cmd_ring *ring) { struct qwx_softc *sc = &psc->sc_sc; uint64_t base = QWX_DMA_DVA(ring->dmamem); struct qwx_mhi_cmd_ctxt *c; if (ring->queued >= ring->num_elements) return 1; if (ring->wp + sizeof(struct qwx_mhi_ring_element) >= base + ring->size) ring->wp = base; else ring->wp += sizeof(struct qwx_mhi_ring_element); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->cmd_ctxt), 0, QWX_DMA_LEN(psc->cmd_ctxt), BUS_DMASYNC_POSTREAD); c = (struct qwx_mhi_cmd_ctxt *)QWX_DMA_KVA(psc->cmd_ctxt); c->wp = htole64(ring->wp); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->cmd_ctxt), 0, QWX_DMA_LEN(psc->cmd_ctxt), BUS_DMASYNC_PREWRITE); ring->queued++; qwx_mhi_ring_doorbell(sc, MHI_CRDB_LOWER, ring->wp); return 0; } int qwx_mhi_send_cmd(struct qwx_pci_softc *psc, uint32_t cmd, uint32_t chan) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_pci_cmd_ring *ring = &psc->cmd_ring; struct qwx_mhi_ring_element *e; if (ring->queued >= ring->num_elements) { printf("%s: command ring overflow\n", sc->sc_dev.dv_xname); return 1; } e = qwx_pci_cmd_ring_get_elem(ring, ring->wp); if (e == NULL) return 1; e->ptr = 0ULL; e->dword[0] = 0; e->dword[1] = htole32( ((chan << MHI_TRE_CMD_CHID_SHFT) & MHI_TRE_CMD_CHID_MASK) | ((cmd << MHI_TRE_CMD_CMDID_SHFT) & MHI_TRE_CMD_CMDID_MASK)); return qwx_mhi_cmd_ring_submit(psc, ring); } void * qwx_pci_xfer_ring_get_elem(struct qwx_pci_xfer_ring *ring, uint64_t wp) { uint64_t base = QWX_DMA_DVA(ring->dmamem), offset; void *addr = QWX_DMA_KVA(ring->dmamem); if (wp < base) return NULL; offset = wp - base; if (offset >= ring->size) return NULL; return addr + offset; } struct qwx_xfer_data * qwx_pci_xfer_ring_get_data(struct qwx_pci_xfer_ring *ring, uint64_t wp) { uint64_t base = QWX_DMA_DVA(ring->dmamem), offset; if (wp < base) return NULL; offset = wp - base; if (offset >= ring->size) return NULL; return &ring->data[offset / sizeof(ring->data[0])]; } int qwx_mhi_submit_xfer(struct qwx_softc *sc, struct mbuf *m) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; struct qwx_pci_xfer_ring *ring; struct qwx_mhi_ring_element *e; struct qwx_xfer_data *xfer; uint64_t paddr, base; int err; ring = &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND]; if (ring->queued >= ring->num_elements) return 1; if (m->m_pkthdr.len > QWX_PCI_XFER_MAX_DATA_SIZE) { /* TODO: chunk xfers */ printf("%s: xfer too large: %d bytes\n", __func__, m->m_pkthdr.len); return 1; } e = qwx_pci_xfer_ring_get_elem(ring, ring->wp); if (e == NULL) return 1; xfer = qwx_pci_xfer_ring_get_data(ring, ring->wp); if (xfer == NULL || xfer->m != NULL) return 1; err = bus_dmamap_load_mbuf(sc->sc_dmat, xfer->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err && err != EFBIG) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, err); return err; } if (err) { /* Too many DMA segments, linearize mbuf. */ if (m_defrag(m, M_DONTWAIT)) return ENOBUFS; err = bus_dmamap_load_mbuf(sc->sc_dmat, xfer->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, err); return err; } } bus_dmamap_sync(sc->sc_dmat, xfer->map, 0, m->m_pkthdr.len, BUS_DMASYNC_PREWRITE); xfer->m = m; paddr = xfer->map->dm_segs[0].ds_addr; e->ptr = htole64(paddr); e->dword[0] = htole32((m->m_pkthdr.len << MHI_TRE0_DATA_LEN_SHFT) & MHI_TRE0_DATA_LEN_MASK); e->dword[1] = htole32(MHI_TRE1_DATA_IEOT | MHI_TRE1_DATA_TYPE_TRANSFER << MHI_TRE1_DATA_TYPE_SHIFT); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem), 0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_PREWRITE); base = QWX_DMA_DVA(ring->dmamem); if (ring->wp + sizeof(struct qwx_mhi_ring_element) >= base + ring->size) ring->wp = base; else ring->wp += sizeof(struct qwx_mhi_ring_element); ring->queued++; ring->chan_ctxt->wp = htole64(ring->wp); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0, QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE); qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); return 0; } int qwx_mhi_start_channel(struct qwx_pci_softc *psc, struct qwx_pci_xfer_ring *ring) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_mhi_chan_ctxt *c; int ret = 0; uint32_t chcfg; uint64_t paddr, len; DNPRINTF(QWX_D_MHI, "%s: start MHI channel %d in state %d\n", __func__, ring->mhi_chan_id, ring->mhi_chan_state); c = ring->chan_ctxt; chcfg = le32toh(c->chcfg); chcfg &= ~MHI_CHAN_CTX_CHSTATE_MASK; chcfg |= MHI_CHAN_CTX_CHSTATE_ENABLED; c->chcfg = htole32(chcfg); paddr = QWX_DMA_DVA(ring->dmamem); ring->rp = ring->wp = paddr; c->rbase = htole64(paddr); c->rp = htole64(ring->rp); c->wp = htole64(ring->wp); len = sizeof(struct qwx_mhi_ring_element) * ring->num_elements; c->rlen = htole64(len); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0, QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE); ring->cmd_status = MHI_EV_CC_INVALID; if (qwx_mhi_send_cmd(psc, MHI_CMD_START_CHAN, ring->mhi_chan_id)) return 1; while (ring->cmd_status != MHI_EV_CC_SUCCESS) { ret = tsleep_nsec(&ring->cmd_status, 0, "qwxcmd", SEC_TO_NSEC(5)); if (ret) break; } if (ret) { printf("%s: could not start MHI channel %d in state %d: status 0x%x\n", sc->sc_dev.dv_xname, ring->mhi_chan_id, ring->mhi_chan_state, ring->cmd_status); return 1; } if (ring->mhi_chan_direction == MHI_CHAN_TYPE_INBOUND) { uint64_t wp = QWX_DMA_DVA(ring->dmamem); int i; for (i = 0; i < ring->num_elements; i++) { struct qwx_mhi_ring_element *e; struct qwx_xfer_data *xfer; uint64_t paddr; e = qwx_pci_xfer_ring_get_elem(ring, wp); xfer = qwx_pci_xfer_ring_get_data(ring, wp); paddr = xfer->map->dm_segs[0].ds_addr; e->ptr = htole64(paddr); e->dword[0] = htole32((QWX_PCI_XFER_MAX_DATA_SIZE << MHI_TRE0_DATA_LEN_SHFT) & MHI_TRE0_DATA_LEN_MASK); e->dword[1] = htole32(MHI_TRE1_DATA_IEOT | MHI_TRE1_DATA_BEI | MHI_TRE1_DATA_TYPE_TRANSFER << MHI_TRE1_DATA_TYPE_SHIFT); ring->wp = wp; wp += sizeof(*e); } bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem), 0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_PREWRITE); qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); } return 0; } int qwx_mhi_start_channels(struct qwx_pci_softc *psc) { struct qwx_pci_xfer_ring *ring; int ret = 0; qwx_mhi_device_wake(&psc->sc_sc); ring = &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_OUTBOUND]; if (qwx_mhi_start_channel(psc, ring)) { ret = 1; goto done; } ring = &psc->xfer_rings[QWX_PCI_XFER_RING_IPCR_INBOUND]; if (qwx_mhi_start_channel(psc, ring)) ret = 1; done: qwx_mhi_device_zzz(&psc->sc_sc); return ret; } int qwx_mhi_start(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; uint32_t off; uint32_t ee, state; int ret; qwx_mhi_init_dev_ctxt(psc); psc->bhi_off = qwx_pci_read(sc, MHI_BHI_OFFSET); DNPRINTF(QWX_D_MHI, "%s: BHI offset 0x%x\n", __func__, psc->bhi_off); psc->bhie_off = qwx_pci_read(sc, MHI_BHIE_OFFSET); DNPRINTF(QWX_D_MHI, "%s: BHIE offset 0x%x\n", __func__, psc->bhie_off); /* Clean BHIE RX registers */ for (off = MHI_BHIE_RXVECADDR_LOW_OFFS; off < (MHI_BHIE_RXVECSTATUS_OFFS - 4); off += 4) qwx_pci_write(sc, psc->bhie_off + off, 0x0); qwx_rddm_prepare(psc); /* Program BHI INTVEC */ qwx_pci_write(sc, psc->bhi_off + MHI_BHI_INTVEC, 0x00); /* * Get BHI execution environment and confirm that it is valid * for power on. */ ee = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_EXECENV); if (!MHI_POWER_UP_CAPABLE(ee)) { printf("%s: invalid EE for power on: 0x%x\n", sc->sc_dev.dv_xname, ee); return 1; } /* * Get MHI state of the device and reset it if it is in system * error. */ state = qwx_pci_read(sc, MHI_STATUS); DNPRINTF(QWX_D_MHI, "%s: MHI power on with EE: 0x%x, status: 0x%x\n", sc->sc_dev.dv_xname, ee, state); state = (state & MHI_STATUS_MHISTATE_MASK) >> MHI_STATUS_MHISTATE_SHFT; if (state == MHI_STATE_SYS_ERR) { if (qwx_mhi_reset_device(sc, 0)) return 1; state = qwx_pci_read(sc, MHI_STATUS); DNPRINTF(QWX_D_MHI, "%s: MHI state after reset: 0x%x\n", sc->sc_dev.dv_xname, state); state = (state & MHI_STATUS_MHISTATE_MASK) >> MHI_STATUS_MHISTATE_SHFT; if (state == MHI_STATE_SYS_ERR) { printf("%s: MHI stuck in system error state\n", sc->sc_dev.dv_xname); return 1; } } psc->bhi_ee = ee; psc->mhi_state = state; #if notyet /* Enable IRQs */ // XXX todo? #endif /* Transition to primary runtime. */ if (MHI_IN_PBL(ee)) { ret = qwx_mhi_fw_load_handler(psc); if (ret) return ret; /* XXX without this delay starting the channels may fail */ delay(1000); qwx_mhi_start_channels(psc); } else { /* XXX Handle partially initialized device...?!? */ ee = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_EXECENV); if (!MHI_IN_MISSION_MODE(ee)) { printf("%s: failed to power up MHI, ee=0x%x\n", sc->sc_dev.dv_xname, ee); return EIO; } } return 0; } void qwx_mhi_stop(struct qwx_softc *sc) { qwx_mhi_reset_device(sc, 1); } int qwx_mhi_reset_device(struct qwx_softc *sc, int force) { struct qwx_pci_softc *psc = (struct qwx_pci_softc *)sc; uint32_t reg; int ret = 0; reg = qwx_pcic_read32(sc, MHI_STATUS); DNPRINTF(QWX_D_MHI, "%s: MHISTATUS 0x%x\n", sc->sc_dev.dv_xname, reg); /* * Observed on QCA6390 that after SOC_GLOBAL_RESET, MHISTATUS * has SYSERR bit set and thus need to set MHICTRL_RESET * to clear SYSERR. */ if (force || (reg & MHI_STATUS_SYSERR_MASK)) { /* Trigger MHI Reset in device. */ qwx_pcic_write32(sc, MHI_CTRL, MHI_CTRL_RESET_MASK); /* Wait for the reset bit to be cleared by the device. */ ret = qwx_mhi_await_device_reset(sc); if (ret) return ret; if (psc->bhi_off == 0) psc->bhi_off = qwx_pci_read(sc, MHI_BHI_OFFSET); /* Device clear BHI INTVEC so re-program it. */ qwx_pci_write(sc, psc->bhi_off + MHI_BHI_INTVEC, 0x00); } return 0; } static inline void qwx_mhi_reset_txvecdb(struct qwx_softc *sc) { qwx_pcic_write32(sc, PCIE_TXVECDB, 0); } static inline void qwx_mhi_reset_txvecstatus(struct qwx_softc *sc) { qwx_pcic_write32(sc, PCIE_TXVECSTATUS, 0); } static inline void qwx_mhi_reset_rxvecdb(struct qwx_softc *sc) { qwx_pcic_write32(sc, PCIE_RXVECDB, 0); } static inline void qwx_mhi_reset_rxvecstatus(struct qwx_softc *sc) { qwx_pcic_write32(sc, PCIE_RXVECSTATUS, 0); } void qwx_mhi_clear_vector(struct qwx_softc *sc) { qwx_mhi_reset_txvecdb(sc); qwx_mhi_reset_txvecstatus(sc); qwx_mhi_reset_rxvecdb(sc); qwx_mhi_reset_rxvecstatus(sc); } int qwx_mhi_fw_load_handler(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int ret; char amss_path[PATH_MAX]; u_char *data; size_t len; if (sc->fw_img[QWX_FW_AMSS].data) { data = sc->fw_img[QWX_FW_AMSS].data; len = sc->fw_img[QWX_FW_AMSS].size; } else { ret = snprintf(amss_path, sizeof(amss_path), "%s-%s-%s", ATH11K_FW_DIR, sc->hw_params.fw.dir, ATH11K_AMSS_FILE); if (ret < 0 || ret >= sizeof(amss_path)) return ENOSPC; ret = loadfirmware(amss_path, &data, &len); if (ret) { printf("%s: could not read %s (error %d)\n", sc->sc_dev.dv_xname, amss_path, ret); return ret; } if (len < MHI_DMA_VEC_CHUNK_SIZE) { printf("%s: %s is too short, have only %zu bytes\n", sc->sc_dev.dv_xname, amss_path, len); free(data, M_DEVBUF, len); return EINVAL; } sc->fw_img[QWX_FW_AMSS].data = data; sc->fw_img[QWX_FW_AMSS].size = len; } /* Second-stage boot loader sits in the first 512 KB of image. */ ret = qwx_mhi_fw_load_bhi(psc, data, MHI_DMA_VEC_CHUNK_SIZE); if (ret != 0) { printf("%s: could not load firmware %s\n", sc->sc_dev.dv_xname, amss_path); return ret; } /* Now load the full image. */ ret = qwx_mhi_fw_load_bhie(psc, data, len); if (ret != 0) { printf("%s: could not load firmware %s\n", sc->sc_dev.dv_xname, amss_path); return ret; } while (psc->bhi_ee < MHI_EE_AMSS) { ret = tsleep_nsec(&psc->bhi_ee, 0, "qwxamss", SEC_TO_NSEC(5)); if (ret) break; } if (ret != 0) { printf("%s: device failed to enter AMSS EE\n", sc->sc_dev.dv_xname); } return ret; } int qwx_mhi_await_device_reset(struct qwx_softc *sc) { const uint32_t msecs = 24, retries = 2; uint32_t reg; int timeout; /* Poll for CTRL RESET to clear. */ timeout = retries; while (timeout > 0) { reg = qwx_pci_read(sc, MHI_CTRL); DNPRINTF(QWX_D_MHI, "%s: MHI_CTRL is 0x%x\n", __func__, reg); if ((reg & MHI_CTRL_RESET_MASK) == 0) break; DELAY((msecs / retries) * 1000); timeout--; } if (timeout == 0) { DNPRINTF(QWX_D_MHI, "%s: MHI reset failed\n", __func__); return ETIMEDOUT; } return 0; } int qwx_mhi_await_device_ready(struct qwx_softc *sc) { uint32_t reg; int timeout; const uint32_t msecs = 2000, retries = 4; /* Poll for READY to be set. */ timeout = retries; while (timeout > 0) { reg = qwx_pci_read(sc, MHI_STATUS); DNPRINTF(QWX_D_MHI, "%s: MHI_STATUS is 0x%x\n", __func__, reg); if (reg & MHI_STATUS_READY_MASK) { reg &= ~MHI_STATUS_READY_MASK; qwx_pci_write(sc, MHI_STATUS, reg); break; } DELAY((msecs / retries) * 1000); timeout--; } if (timeout == 0) { printf("%s: MHI not ready\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } return 0; } void qwx_mhi_ready_state_transition(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int ret, i; ret = qwx_mhi_await_device_reset(sc); if (ret) return; ret = qwx_mhi_await_device_ready(sc); if (ret) return; /* Set up memory-mapped IO for channels, events, etc. */ qwx_mhi_init_mmio(psc); /* Notify event rings. */ for (i = 0; i < nitems(psc->event_rings); i++) { struct qwx_pci_event_ring *ring = &psc->event_rings[i]; qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); } /* * Set the device into M0 state. The device will transition * into M0 and the execution environment will switch to SBL. */ qwx_mhi_set_state(sc, MHI_STATE_M0); } void qwx_mhi_mission_mode_state_transition(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; int i; qwx_mhi_device_wake(sc); /* Notify event rings. */ for (i = 0; i < nitems(psc->event_rings); i++) { struct qwx_pci_event_ring *ring = &psc->event_rings[i]; qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); } /* TODO: Notify transfer/command rings? */ qwx_mhi_device_zzz(sc); } void qwx_mhi_low_power_mode_state_transition(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; qwx_mhi_set_state(sc, MHI_STATE_M2); } void qwx_mhi_set_state(struct qwx_softc *sc, uint32_t state) { uint32_t reg; reg = qwx_pci_read(sc, MHI_CTRL); if (state != MHI_STATE_RESET) { reg &= ~MHI_CTRL_MHISTATE_MASK; reg |= (state << MHI_CTRL_MHISTATE_SHFT) & MHI_CTRL_MHISTATE_MASK; } else reg |= MHI_CTRL_RESET_MASK; qwx_pci_write(sc, MHI_CTRL, reg); } void qwx_mhi_init_mmio(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; uint64_t paddr; uint32_t reg; int i; reg = qwx_pci_read(sc, MHI_CHDBOFF); /* Set device wake doorbell address. */ psc->wake_db = reg + 8 * MHI_DEV_WAKE_DB; /* Set doorbell address for each transfer ring. */ for (i = 0; i < nitems(psc->xfer_rings); i++) { struct qwx_pci_xfer_ring *ring = &psc->xfer_rings[i]; ring->db_addr = reg + (8 * ring->mhi_chan_id); } reg = qwx_pci_read(sc, MHI_ERDBOFF); /* Set doorbell address for each event ring. */ for (i = 0; i < nitems(psc->event_rings); i++) { struct qwx_pci_event_ring *ring = &psc->event_rings[i]; ring->db_addr = reg + (8 * i); } paddr = QWX_DMA_DVA(psc->chan_ctxt); qwx_pci_write(sc, MHI_CCABAP_HIGHER, paddr >> 32); qwx_pci_write(sc, MHI_CCABAP_LOWER, paddr & 0xffffffff); paddr = QWX_DMA_DVA(psc->event_ctxt); qwx_pci_write(sc, MHI_ECABAP_HIGHER, paddr >> 32); qwx_pci_write(sc, MHI_ECABAP_LOWER, paddr & 0xffffffff); paddr = QWX_DMA_DVA(psc->cmd_ctxt); qwx_pci_write(sc, MHI_CRCBAP_HIGHER, paddr >> 32); qwx_pci_write(sc, MHI_CRCBAP_LOWER, paddr & 0xffffffff); /* Not (yet?) using fixed memory space from a device-tree. */ qwx_pci_write(sc, MHI_CTRLBASE_HIGHER, 0); qwx_pci_write(sc, MHI_CTRLBASE_LOWER, 0); qwx_pci_write(sc, MHI_DATABASE_HIGHER, 0); qwx_pci_write(sc, MHI_DATABASE_LOWER, 0); qwx_pci_write(sc, MHI_CTRLLIMIT_HIGHER, 0x0); qwx_pci_write(sc, MHI_CTRLLIMIT_LOWER, 0xffffffff); qwx_pci_write(sc, MHI_DATALIMIT_HIGHER, 0x0); qwx_pci_write(sc, MHI_DATALIMIT_LOWER, 0xffffffff); reg = qwx_pci_read(sc, MHI_CFG); reg &= ~(MHI_CFG_NER_MASK | MHI_CFG_NHWER_MASK); reg |= QWX_NUM_EVENT_CTX << MHI_CFG_NER_SHFT; qwx_pci_write(sc, MHI_CFG, reg); } int qwx_mhi_fw_load_bhi(struct qwx_pci_softc *psc, uint8_t *data, size_t len) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_dmamem *data_adm; uint32_t seq, reg, status = MHI_BHI_STATUS_RESET; uint64_t paddr; int ret; data_adm = qwx_dmamem_alloc(sc->sc_dmat, len, 0); if (data_adm == NULL) { printf("%s: could not allocate BHI DMA data buffer\n", sc->sc_dev.dv_xname); return 1; } /* Copy firmware image to DMA memory. */ memcpy(QWX_DMA_KVA(data_adm), data, len); qwx_pci_write(sc, psc->bhi_off + MHI_BHI_STATUS, 0); /* Set data physical address and length. */ paddr = QWX_DMA_DVA(data_adm); qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGADDR_HIGH, paddr >> 32); qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGADDR_LOW, paddr & 0xffffffff); qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGSIZE, len); /* Set a random transaction sequence number. */ do { seq = arc4random_uniform(MHI_BHI_TXDB_SEQNUM_BMSK); } while (seq == 0); qwx_pci_write(sc, psc->bhi_off + MHI_BHI_IMGTXDB, seq); /* Wait for completion. */ ret = 0; while (status != MHI_BHI_STATUS_SUCCESS && psc->bhi_ee < MHI_EE_SBL) { ret = tsleep_nsec(&psc->bhi_ee, 0, "qwxbhi", SEC_TO_NSEC(5)); if (ret) break; reg = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_STATUS); status = (reg & MHI_BHI_STATUS_MASK) >> MHI_BHI_STATUS_SHFT; } if (ret) { printf("%s: BHI load timeout\n", sc->sc_dev.dv_xname); reg = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_STATUS); status = (reg & MHI_BHI_STATUS_MASK) >> MHI_BHI_STATUS_SHFT; DNPRINTF(QWX_D_MHI, "%s: BHI status is 0x%x EE is 0x%x\n", __func__, status, psc->bhi_ee); } qwx_dmamem_free(sc->sc_dmat, data_adm); return ret; } int qwx_mhi_fw_load_bhie(struct qwx_pci_softc *psc, uint8_t *data, size_t len) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_dma_vec_entry *vec; uint32_t seq, reg, state = MHI_BHIE_TXVECSTATUS_STATUS_RESET; uint64_t paddr; const size_t chunk_size = MHI_DMA_VEC_CHUNK_SIZE; size_t nseg, remain, vec_size; int i, ret; nseg = howmany(len, chunk_size); if (nseg == 0) { printf("%s: BHIE data too short, have only %zu bytes\n", sc->sc_dev.dv_xname, len); return 1; } if (psc->amss_data == NULL || QWX_DMA_LEN(psc->amss_data) < len) { if (psc->amss_data) qwx_dmamem_free(sc->sc_dmat, psc->amss_data); psc->amss_data = qwx_dmamem_alloc(sc->sc_dmat, len, 0); if (psc->amss_data == NULL) { printf("%s: could not allocate BHIE DMA data buffer\n", sc->sc_dev.dv_xname); return 1; } } vec_size = nseg * sizeof(*vec); if (psc->amss_vec == NULL || QWX_DMA_LEN(psc->amss_vec) < vec_size) { if (psc->amss_vec) qwx_dmamem_free(sc->sc_dmat, psc->amss_vec); psc->amss_vec = qwx_dmamem_alloc(sc->sc_dmat, vec_size, 0); if (psc->amss_vec == NULL) { printf("%s: could not allocate BHIE DMA vec buffer\n", sc->sc_dev.dv_xname); qwx_dmamem_free(sc->sc_dmat, psc->amss_data); psc->amss_data = NULL; return 1; } } /* Copy firmware image to DMA memory. */ memcpy(QWX_DMA_KVA(psc->amss_data), data, len); /* Create vector which controls chunk-wise DMA copy in hardware. */ paddr = QWX_DMA_DVA(psc->amss_data); vec = QWX_DMA_KVA(psc->amss_vec); remain = len; for (i = 0; i < nseg; i++) { vec[i].paddr = paddr; if (remain >= chunk_size) { vec[i].size = chunk_size; remain -= chunk_size; paddr += chunk_size; } else vec[i].size = remain; } /* Set vector physical address and length. */ paddr = QWX_DMA_DVA(psc->amss_vec); qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECADDR_HIGH_OFFS, paddr >> 32); qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECADDR_LOW_OFFS, paddr & 0xffffffff); qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECSIZE_OFFS, vec_size); /* Set a random transaction sequence number. */ do { seq = arc4random_uniform(MHI_BHIE_TXVECSTATUS_SEQNUM_BMSK); } while (seq == 0); reg = qwx_pci_read(sc, psc->bhie_off + MHI_BHIE_TXVECDB_OFFS); reg &= ~MHI_BHIE_TXVECDB_SEQNUM_BMSK; reg |= seq << MHI_BHIE_TXVECDB_SEQNUM_SHFT; qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_TXVECDB_OFFS, reg); /* Wait for completion. */ ret = 0; while (state != MHI_BHIE_TXVECSTATUS_STATUS_XFER_COMPL) { ret = tsleep_nsec(&psc->bhie_off, 0, "qwxbhie", SEC_TO_NSEC(5)); if (ret) break; reg = qwx_pci_read(sc, psc->bhie_off + MHI_BHIE_TXVECSTATUS_OFFS); state = (reg & MHI_BHIE_TXVECSTATUS_STATUS_BMSK) >> MHI_BHIE_TXVECSTATUS_STATUS_SHFT; DNPRINTF(QWX_D_MHI, "%s: txvec state is 0x%x\n", __func__, state); } if (ret) { printf("%s: BHIE load timeout\n", sc->sc_dev.dv_xname); return ret; } return 0; } void qwx_rddm_prepare(struct qwx_pci_softc *psc) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_dma_vec_entry *vec; struct qwx_dmamem *data_adm, *vec_adm; uint32_t seq, reg; uint64_t paddr; const size_t len = QWX_RDDM_DUMP_SIZE; const size_t chunk_size = MHI_DMA_VEC_CHUNK_SIZE; size_t nseg, remain, vec_size; int i; nseg = howmany(len, chunk_size); if (nseg == 0) { printf("%s: RDDM data too short, have only %zu bytes\n", sc->sc_dev.dv_xname, len); return; } data_adm = qwx_dmamem_alloc(sc->sc_dmat, len, 0); if (data_adm == NULL) { printf("%s: could not allocate BHIE DMA data buffer\n", sc->sc_dev.dv_xname); return; } vec_size = nseg * sizeof(*vec); vec_adm = qwx_dmamem_alloc(sc->sc_dmat, vec_size, 0); if (vec_adm == NULL) { printf("%s: could not allocate BHIE DMA vector buffer\n", sc->sc_dev.dv_xname); qwx_dmamem_free(sc->sc_dmat, data_adm); return; } /* Create vector which controls chunk-wise DMA copy from hardware. */ paddr = QWX_DMA_DVA(data_adm); vec = QWX_DMA_KVA(vec_adm); remain = len; for (i = 0; i < nseg; i++) { vec[i].paddr = paddr; if (remain >= chunk_size) { vec[i].size = chunk_size; remain -= chunk_size; paddr += chunk_size; } else vec[i].size = remain; } /* Set vector physical address and length. */ paddr = QWX_DMA_DVA(vec_adm); qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECADDR_HIGH_OFFS, paddr >> 32); qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECADDR_LOW_OFFS, paddr & 0xffffffff); qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECSIZE_OFFS, vec_size); /* Set a random transaction sequence number. */ do { seq = arc4random_uniform(MHI_BHIE_RXVECSTATUS_SEQNUM_BMSK); } while (seq == 0); reg = qwx_pci_read(sc, psc->bhie_off + MHI_BHIE_RXVECDB_OFFS); reg &= ~MHI_BHIE_RXVECDB_SEQNUM_BMSK; reg |= seq << MHI_BHIE_RXVECDB_SEQNUM_SHFT; qwx_pci_write(sc, psc->bhie_off + MHI_BHIE_RXVECDB_OFFS, reg); psc->rddm_data = data_adm; psc->rddm_vec = vec_adm; } void qwx_rddm_task(void *arg) { struct qwx_pci_softc *psc = arg; struct qwx_softc *sc = &psc->sc_sc; uint32_t reg, state = MHI_BHIE_RXVECSTATUS_STATUS_RESET; const size_t len = QWX_RDDM_DUMP_SIZE; int i, timeout; const uint32_t msecs = 100, retries = 20; uint8_t *rddm; struct nameidata nd; struct vnode *vp = NULL; struct iovec iov[3]; struct uio uio; char path[PATH_MAX]; int error = 0; if (psc->rddm_data == NULL) { DPRINTF("%s: RDDM not prepared\n", __func__); return; } /* Poll for completion */ timeout = retries; while (timeout > 0 && state != MHI_BHIE_RXVECSTATUS_STATUS_XFER_COMPL) { reg = qwx_pci_read(sc, psc->bhie_off + MHI_BHIE_RXVECSTATUS_OFFS); state = (reg & MHI_BHIE_RXVECSTATUS_STATUS_BMSK) >> MHI_BHIE_RXVECSTATUS_STATUS_SHFT; DPRINTF("%s: txvec state is 0x%x\n", __func__, state); DELAY((msecs / retries) * 1000); timeout--; } if (timeout == 0) { DPRINTF("%s: RDDM dump failed\n", sc->sc_dev.dv_xname); return; } rddm = QWX_DMA_KVA(psc->rddm_data); DPRINTF("%s: RDDM snippet:\n", __func__); for (i = 0; i < MIN(64, len); i++) { DPRINTF("%s %.2x", i % 16 == 0 ? "\n" : "", rddm[i]); } DPRINTF("\n"); DPRINTF("%s: sleeping for 30 seconds to allow userland to boot\n", __func__); tsleep_nsec(&psc->rddm_data, 0, "qwxrddm", SEC_TO_NSEC(30)); snprintf(path, sizeof(path), "/root/%s-rddm.bin", sc->sc_dev.dv_xname); DPRINTF("%s: saving RDDM to %s\n", __func__, path); NDINIT(&nd, 0, 0, UIO_SYSSPACE, path, curproc); nd.ni_pledge = PLEDGE_CPATH | PLEDGE_WPATH; nd.ni_unveil = UNVEIL_CREATE | UNVEIL_WRITE; error = vn_open(&nd, FWRITE | O_CREAT | O_NOFOLLOW | O_TRUNC, S_IRUSR | S_IWUSR); if (error) { DPRINTF("%s: vn_open: error %d\n", __func__, error); goto done; } vp = nd.ni_vp; VOP_UNLOCK(vp); iov[0].iov_base = (void *)rddm; iov[0].iov_len = len; iov[1].iov_len = 0; uio.uio_iov = &iov[0]; uio.uio_offset = 0; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; uio.uio_resid = len; uio.uio_iovcnt = 1; uio.uio_procp = curproc; error = vget(vp, LK_EXCLUSIVE | LK_RETRY); if (error) { DPRINTF("%s: vget: error %d\n", __func__, error); goto done; } error = VOP_WRITE(vp, &uio, IO_UNIT|IO_APPEND, curproc->p_ucred); vput(vp); if (error) DPRINTF("%s: VOP_WRITE: error %d\n", __func__, error); #if 0 error = vn_close(vp, FWRITE, curproc->p_ucred, curproc); if (error) DPRINTF("%s: vn_close: error %d\n", __func__, error); #endif done: qwx_dmamem_free(sc->sc_dmat, psc->rddm_data); qwx_dmamem_free(sc->sc_dmat, psc->rddm_vec); psc->rddm_data = NULL; psc->rddm_vec = NULL; DPRINTF("%s: done, error %d\n", __func__, error); } void * qwx_pci_event_ring_get_elem(struct qwx_pci_event_ring *ring, uint64_t rp) { uint64_t base = QWX_DMA_DVA(ring->dmamem), offset; void *addr = QWX_DMA_KVA(ring->dmamem); if (rp < base) return NULL; offset = rp - base; if (offset >= ring->size) return NULL; return addr + offset; } void qwx_mhi_state_change(struct qwx_pci_softc *psc, int ee, int mhi_state) { struct qwx_softc *sc = &psc->sc_sc; uint32_t old_ee = psc->bhi_ee; uint32_t old_mhi_state = psc->mhi_state; if (ee != -1 && psc->bhi_ee != ee) { switch (ee) { case MHI_EE_PBL: DNPRINTF(QWX_D_MHI, "%s: new EE PBL\n", sc->sc_dev.dv_xname); psc->bhi_ee = ee; break; case MHI_EE_SBL: psc->bhi_ee = ee; DNPRINTF(QWX_D_MHI, "%s: new EE SBL\n", sc->sc_dev.dv_xname); break; case MHI_EE_AMSS: DNPRINTF(QWX_D_MHI, "%s: new EE AMSS\n", sc->sc_dev.dv_xname); psc->bhi_ee = ee; /* Wake thread loading the full AMSS image. */ wakeup(&psc->bhie_off); break; case MHI_EE_WFW: DNPRINTF(QWX_D_MHI, "%s: new EE WFW\n", sc->sc_dev.dv_xname); psc->bhi_ee = ee; break; default: printf("%s: unhandled EE change to %x\n", sc->sc_dev.dv_xname, ee); break; } } if (mhi_state != -1 && psc->mhi_state != mhi_state) { switch (mhi_state) { case -1: break; case MHI_STATE_RESET: DNPRINTF(QWX_D_MHI, "%s: new MHI state RESET\n", sc->sc_dev.dv_xname); psc->mhi_state = mhi_state; break; case MHI_STATE_READY: DNPRINTF(QWX_D_MHI, "%s: new MHI state READY\n", sc->sc_dev.dv_xname); psc->mhi_state = mhi_state; qwx_mhi_ready_state_transition(psc); break; case MHI_STATE_M0: DNPRINTF(QWX_D_MHI, "%s: new MHI state M0\n", sc->sc_dev.dv_xname); psc->mhi_state = mhi_state; qwx_mhi_mission_mode_state_transition(psc); break; case MHI_STATE_M1: DNPRINTF(QWX_D_MHI, "%s: new MHI state M1\n", sc->sc_dev.dv_xname); psc->mhi_state = mhi_state; qwx_mhi_low_power_mode_state_transition(psc); break; case MHI_STATE_SYS_ERR: DNPRINTF(QWX_D_MHI, "%s: new MHI state SYS ERR\n", sc->sc_dev.dv_xname); psc->mhi_state = mhi_state; break; default: printf("%s: unhandled MHI state change to %x\n", sc->sc_dev.dv_xname, mhi_state); break; } } if (old_ee != psc->bhi_ee) wakeup(&psc->bhi_ee); if (old_mhi_state != psc->mhi_state) wakeup(&psc->mhi_state); } void qwx_pci_intr_ctrl_event_mhi(struct qwx_pci_softc *psc, uint32_t mhi_state) { DNPRINTF(QWX_D_MHI, "%s: MHI state change 0x%x -> 0x%x\n", __func__, psc->mhi_state, mhi_state); if (psc->mhi_state != mhi_state) qwx_mhi_state_change(psc, -1, mhi_state); } void qwx_pci_intr_ctrl_event_ee(struct qwx_pci_softc *psc, uint32_t ee) { DNPRINTF(QWX_D_MHI, "%s: EE change 0x%x to 0x%x\n", __func__, psc->bhi_ee, ee); if (psc->bhi_ee != ee) qwx_mhi_state_change(psc, ee, -1); } void qwx_pci_intr_ctrl_event_cmd_complete(struct qwx_pci_softc *psc, uint64_t ptr, uint32_t cmd_status) { struct qwx_pci_cmd_ring *cmd_ring = &psc->cmd_ring; uint64_t base = QWX_DMA_DVA(cmd_ring->dmamem); struct qwx_pci_xfer_ring *xfer_ring = NULL; struct qwx_mhi_ring_element *e; uint32_t tre1, chid; size_t i; e = qwx_pci_cmd_ring_get_elem(cmd_ring, ptr); if (e == NULL) return; tre1 = le32toh(e->dword[1]); chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT; for (i = 0; i < nitems(psc->xfer_rings); i++) { if (psc->xfer_rings[i].mhi_chan_id == chid) { xfer_ring = &psc->xfer_rings[i]; break; } } if (xfer_ring == NULL) { printf("%s: no transfer ring found for command completion " "on channel %u\n", __func__, chid); return; } xfer_ring->cmd_status = cmd_status; wakeup(&xfer_ring->cmd_status); if (cmd_ring->rp + sizeof(*e) >= base + cmd_ring->size) cmd_ring->rp = base; else cmd_ring->rp += sizeof(*e); } int qwx_pci_intr_ctrl_event(struct qwx_pci_softc *psc, struct qwx_pci_event_ring *ring) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_mhi_event_ctxt *c; uint64_t rp, wp, base; struct qwx_mhi_ring_element *e; uint32_t tre0, tre1, type, code, chid, len; c = ring->event_ctxt; if (c == NULL) { /* * Interrupts can trigger before mhi_init_event_rings() * if the device is still active after a warm reboot. */ return 0; } bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0, QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_POSTREAD); rp = le64toh(c->rp); wp = le64toh(c->wp); DNPRINTF(QWX_D_MHI, "%s: kernel rp=0x%llx\n", __func__, ring->rp); DNPRINTF(QWX_D_MHI, "%s: device rp=0x%llx\n", __func__, rp); DNPRINTF(QWX_D_MHI, "%s: kernel wp=0x%llx\n", __func__, ring->wp); DNPRINTF(QWX_D_MHI, "%s: device wp=0x%llx\n", __func__, wp); base = QWX_DMA_DVA(ring->dmamem); if (ring->rp == rp || rp < base || rp >= base + ring->size) return 0; if (wp < base || wp >= base + ring->size) return 0; bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem), 0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_POSTREAD); while (ring->rp != rp) { e = qwx_pci_event_ring_get_elem(ring, ring->rp); if (e == NULL) return 0; tre0 = le32toh(e->dword[0]); tre1 = le32toh(e->dword[1]); len = (tre0 & MHI_TRE0_EV_LEN_MASK) >> MHI_TRE0_EV_LEN_SHFT; code = (tre0 & MHI_TRE0_EV_CODE_MASK) >> MHI_TRE0_EV_CODE_SHFT; type = (tre1 & MHI_TRE1_EV_TYPE_MASK) >> MHI_TRE1_EV_TYPE_SHFT; chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT; DNPRINTF(QWX_D_MHI, "%s: len=%u code=0x%x type=0x%x chid=%d\n", __func__, len, code, type, chid); switch (type) { case MHI_PKT_TYPE_STATE_CHANGE_EVENT: qwx_pci_intr_ctrl_event_mhi(psc, code); break; case MHI_PKT_TYPE_EE_EVENT: qwx_pci_intr_ctrl_event_ee(psc, code); break; case MHI_PKT_TYPE_CMD_COMPLETION_EVENT: qwx_pci_intr_ctrl_event_cmd_complete(psc, le64toh(e->ptr), code); break; default: printf("%s: unhandled event type 0x%x\n", __func__, type); break; } if (ring->rp + sizeof(*e) >= base + ring->size) ring->rp = base; else ring->rp += sizeof(*e); if (ring->wp + sizeof(*e) >= base + ring->size) ring->wp = base; else ring->wp += sizeof(*e); } c->wp = htole64(ring->wp); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0, QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_PREWRITE); qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); return 1; } void qwx_pci_intr_data_event_tx(struct qwx_pci_softc *psc, struct qwx_mhi_ring_element *e) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_pci_xfer_ring *ring; struct qwx_xfer_data *xfer; uint64_t rp, evrp, base, paddr; uint32_t tre0, tre1, code, chid, evlen, len; int i; tre0 = le32toh(e->dword[0]); tre1 = le32toh(e->dword[1]); evlen = (tre0 & MHI_TRE0_EV_LEN_MASK) >> MHI_TRE0_EV_LEN_SHFT; code = (tre0 & MHI_TRE0_EV_CODE_MASK) >> MHI_TRE0_EV_CODE_SHFT; chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT; switch (code) { case MHI_EV_CC_EOT: for (i = 0; i < nitems(psc->xfer_rings); i++) { ring = &psc->xfer_rings[i]; if (ring->mhi_chan_id == chid) break; } if (i == nitems(psc->xfer_rings)) { printf("%s: unhandled channel 0x%x\n", __func__, chid); break; } base = QWX_DMA_DVA(ring->dmamem); /* PTR contains the entry that was last written */ evrp = letoh64(e->ptr); rp = evrp; if (rp < base || rp >= base + ring->size) { printf("%s: invalid ptr 0x%llx\n", __func__, rp); break; } /* Point rp to next empty slot */ if (rp + sizeof(*e) >= base + ring->size) rp = base; else rp += sizeof(*e); /* Parse until next empty slot */ while (ring->rp != rp) { DNPRINTF(QWX_D_MHI, "%s:%d: ring->rp 0x%llx " "ring->wp 0x%llx rp 0x%llx\n", __func__, __LINE__, ring->rp, ring->wp, rp); e = qwx_pci_xfer_ring_get_elem(ring, ring->rp); xfer = qwx_pci_xfer_ring_get_data(ring, ring->rp); if (ring->rp == evrp) len = evlen; else len = xfer->m->m_pkthdr.len; bus_dmamap_sync(sc->sc_dmat, xfer->map, 0, xfer->m->m_pkthdr.len, BUS_DMASYNC_POSTREAD); #ifdef QWX_DEBUG { int i; DNPRINTF(QWX_D_MHI, "%s: chan %u data (len %u): ", __func__, ring->mhi_chan_id, len); for (i = 0; i < MIN(32, len); i++) { DNPRINTF(QWX_D_MHI, "%02x ", (unsigned char)mtod(xfer->m, caddr_t)[i]); } if (i < len) DNPRINTF(QWX_D_MHI, "..."); DNPRINTF(QWX_D_MHI, "\n"); } #endif if (ring->mhi_chan_direction == MHI_CHAN_TYPE_INBOUND) { /* Save m_data as upper layers use m_adj(9) */ void *o_data = xfer->m->m_data; /* Pass mbuf to upper layers */ qwx_qrtr_recv_msg(sc, xfer->m); /* Reset RX mbuf instead of free/alloc */ KASSERT(xfer->m->m_next == NULL); xfer->m->m_data = o_data; xfer->m->m_len = xfer->m->m_pkthdr.len = QWX_PCI_XFER_MAX_DATA_SIZE; paddr = xfer->map->dm_segs[0].ds_addr; e->ptr = htole64(paddr); e->dword[0] = htole32(( QWX_PCI_XFER_MAX_DATA_SIZE << MHI_TRE0_DATA_LEN_SHFT) & MHI_TRE0_DATA_LEN_MASK); e->dword[1] = htole32(MHI_TRE1_DATA_IEOT | MHI_TRE1_DATA_BEI | MHI_TRE1_DATA_TYPE_TRANSFER << MHI_TRE1_DATA_TYPE_SHIFT); if (ring->wp + sizeof(*e) >= base + ring->size) ring->wp = base; else ring->wp += sizeof(*e); } else { /* Unload and free TX mbuf */ bus_dmamap_unload(sc->sc_dmat, xfer->map); m_freem(xfer->m); xfer->m = NULL; ring->queued--; } if (ring->rp + sizeof(*e) >= base + ring->size) ring->rp = base; else ring->rp += sizeof(*e); } if (ring->mhi_chan_direction == MHI_CHAN_TYPE_INBOUND) { ring->chan_ctxt->wp = htole64(ring->wp); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->chan_ctxt), 0, QWX_DMA_LEN(psc->chan_ctxt), BUS_DMASYNC_PREWRITE); qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); } break; default: printf("%s: unhandled event code 0x%x\n", __func__, code); } } int qwx_pci_intr_data_event(struct qwx_pci_softc *psc, struct qwx_pci_event_ring *ring) { struct qwx_softc *sc = &psc->sc_sc; struct qwx_mhi_event_ctxt *c; uint64_t rp, wp, base; struct qwx_mhi_ring_element *e; uint32_t tre0, tre1, type, code, chid, len; c = ring->event_ctxt; if (c == NULL) { /* * Interrupts can trigger before mhi_init_event_rings() * if the device is still active after a warm reboot. */ return 0; } bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0, QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_POSTREAD); rp = le64toh(c->rp); wp = le64toh(c->wp); DNPRINTF(QWX_D_MHI, "%s: kernel rp=0x%llx\n", __func__, ring->rp); DNPRINTF(QWX_D_MHI, "%s: device rp=0x%llx\n", __func__, rp); DNPRINTF(QWX_D_MHI, "%s: kernel wp=0x%llx\n", __func__, ring->wp); DNPRINTF(QWX_D_MHI, "%s: device wp=0x%llx\n", __func__, wp); base = QWX_DMA_DVA(ring->dmamem); if (ring->rp == rp || rp < base || rp >= base + ring->size) return 0; bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(ring->dmamem), 0, QWX_DMA_LEN(ring->dmamem), BUS_DMASYNC_POSTREAD); while (ring->rp != rp) { e = qwx_pci_event_ring_get_elem(ring, ring->rp); if (e == NULL) return 0; tre0 = le32toh(e->dword[0]); tre1 = le32toh(e->dword[1]); len = (tre0 & MHI_TRE0_EV_LEN_MASK) >> MHI_TRE0_EV_LEN_SHFT; code = (tre0 & MHI_TRE0_EV_CODE_MASK) >> MHI_TRE0_EV_CODE_SHFT; type = (tre1 & MHI_TRE1_EV_TYPE_MASK) >> MHI_TRE1_EV_TYPE_SHFT; chid = (tre1 & MHI_TRE1_EV_CHID_MASK) >> MHI_TRE1_EV_CHID_SHFT; DNPRINTF(QWX_D_MHI, "%s: len=%u code=0x%x type=0x%x chid=%d\n", __func__, len, code, type, chid); switch (type) { case MHI_PKT_TYPE_TX_EVENT: qwx_pci_intr_data_event_tx(psc, e); break; default: printf("%s: unhandled event type 0x%x\n", __func__, type); break; } if (ring->rp + sizeof(*e) >= base + ring->size) ring->rp = base; else ring->rp += sizeof(*e); if (ring->wp + sizeof(*e) >= base + ring->size) ring->wp = base; else ring->wp += sizeof(*e); } c->wp = htole64(ring->wp); bus_dmamap_sync(sc->sc_dmat, QWX_DMA_MAP(psc->event_ctxt), 0, QWX_DMA_LEN(psc->event_ctxt), BUS_DMASYNC_PREWRITE); qwx_mhi_ring_doorbell(sc, ring->db_addr, ring->wp); return 1; } int qwx_pci_intr_mhi_ctrl(void *arg) { struct qwx_pci_softc *psc = arg; if (qwx_pci_intr_ctrl_event(psc, &psc->event_rings[0])) return 1; return 0; } int qwx_pci_intr_mhi_data(void *arg) { struct qwx_pci_softc *psc = arg; if (qwx_pci_intr_data_event(psc, &psc->event_rings[1])) return 1; return 0; } int qwx_pci_intr(void *arg) { struct qwx_pci_softc *psc = arg; struct qwx_softc *sc = (void *)psc; uint32_t ee, state; int ret = 0; /* * Interrupts can trigger before mhi_start() during boot if the device * is still active after a warm reboot. */ if (psc->bhi_off == 0) psc->bhi_off = qwx_pci_read(sc, MHI_BHI_OFFSET); ee = qwx_pci_read(sc, psc->bhi_off + MHI_BHI_EXECENV); state = qwx_pci_read(sc, MHI_STATUS); state = (state & MHI_STATUS_MHISTATE_MASK) >> MHI_STATUS_MHISTATE_SHFT; DNPRINTF(QWX_D_MHI, "%s: BHI interrupt with EE: 0x%x -> 0x%x state: 0x%x -> 0x%x\n", sc->sc_dev.dv_xname, psc->bhi_ee, ee, psc->mhi_state, state); if (ee == MHI_EE_RDDM) { psc->bhi_ee = ee; if (!psc->rddm_triggered) { task_add(systq, &psc->rddm_task); psc->rddm_triggered = 1; } return 1; } else if (psc->bhi_ee == MHI_EE_PBL || psc->bhi_ee == MHI_EE_SBL) { int new_ee = -1, new_mhi_state = -1; if (psc->bhi_ee != ee) new_ee = ee; if (psc->mhi_state != state) new_mhi_state = state; if (new_ee != -1 || new_mhi_state != -1) qwx_mhi_state_change(psc, new_ee, new_mhi_state); ret = 1; } if (!test_bit(ATH11K_FLAG_MULTI_MSI_VECTORS, sc->sc_flags)) { int i; if (qwx_pci_intr_ctrl_event(psc, &psc->event_rings[0])) ret = 1; if (qwx_pci_intr_data_event(psc, &psc->event_rings[1])) ret = 1; for (i = 0; i < sc->hw_params.ce_count; i++) { struct qwx_ce_pipe *ce_pipe = &sc->ce.ce_pipe[i]; if (qwx_ce_intr(ce_pipe)) ret = 1; } for (i = 0; i < nitems(sc->ext_irq_grp); i++) { if (qwx_dp_service_srng(sc, i)) ret = 1; } } return ret; }