/* $OpenBSD: mpii.c,v 1.147 2023/11/29 06:54:09 jmatthew Exp $ */ /* * Copyright (c) 2010, 2012 Mike Belopuhov * Copyright (c) 2009 James Giannoules * Copyright (c) 2005 - 2010 David Gwynne * Copyright (c) 2005 - 2010 Marco Peereboom * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define MPII_DEBUG */ #ifdef MPII_DEBUG #define DPRINTF(x...) do { if (mpii_debug) printf(x); } while(0) #define DNPRINTF(n,x...) do { if (mpii_debug & (n)) printf(x); } while(0) #define MPII_D_CMD (0x0001) #define MPII_D_INTR (0x0002) #define MPII_D_MISC (0x0004) #define MPII_D_DMA (0x0008) #define MPII_D_IOCTL (0x0010) #define MPII_D_RW (0x0020) #define MPII_D_MEM (0x0040) #define MPII_D_CCB (0x0080) #define MPII_D_PPR (0x0100) #define MPII_D_RAID (0x0200) #define MPII_D_EVT (0x0400) #define MPII_D_CFG (0x0800) #define MPII_D_MAP (0x1000) u_int32_t mpii_debug = 0 | MPII_D_CMD | MPII_D_INTR | MPII_D_MISC | MPII_D_DMA | MPII_D_IOCTL | MPII_D_RW | MPII_D_MEM | MPII_D_CCB | MPII_D_PPR | MPII_D_RAID | MPII_D_EVT | MPII_D_CFG | MPII_D_MAP ; #else #define DPRINTF(x...) #define DNPRINTF(n,x...) #endif #define MPII_REQUEST_SIZE (512) #define MPII_REQUEST_CREDIT (128) struct mpii_dmamem { bus_dmamap_t mdm_map; bus_dma_segment_t mdm_seg; size_t mdm_size; caddr_t mdm_kva; }; #define MPII_DMA_MAP(_mdm) ((_mdm)->mdm_map) #define MPII_DMA_DVA(_mdm) ((u_int64_t)(_mdm)->mdm_map->dm_segs[0].ds_addr) #define MPII_DMA_KVA(_mdm) ((void *)(_mdm)->mdm_kva) struct mpii_softc; struct mpii_rcb { SIMPLEQ_ENTRY(mpii_rcb) rcb_link; void *rcb_reply; u_int32_t rcb_reply_dva; }; SIMPLEQ_HEAD(mpii_rcb_list, mpii_rcb); struct mpii_device { int flags; #define MPII_DF_ATTACH (0x0001) #define MPII_DF_DETACH (0x0002) #define MPII_DF_HIDDEN (0x0004) #define MPII_DF_UNUSED (0x0008) #define MPII_DF_VOLUME (0x0010) #define MPII_DF_VOLUME_DISK (0x0020) #define MPII_DF_HOT_SPARE (0x0040) short slot; short percent; u_int16_t dev_handle; u_int16_t enclosure; u_int16_t expander; u_int8_t phy_num; u_int8_t physical_port; }; struct mpii_ccb { struct mpii_softc *ccb_sc; void * ccb_cookie; bus_dmamap_t ccb_dmamap; bus_addr_t ccb_offset; void *ccb_cmd; bus_addr_t ccb_cmd_dva; u_int16_t ccb_dev_handle; u_int16_t ccb_smid; volatile enum { MPII_CCB_FREE, MPII_CCB_READY, MPII_CCB_QUEUED, MPII_CCB_TIMEOUT } ccb_state; void (*ccb_done)(struct mpii_ccb *); struct mpii_rcb *ccb_rcb; SIMPLEQ_ENTRY(mpii_ccb) ccb_link; }; SIMPLEQ_HEAD(mpii_ccb_list, mpii_ccb); struct mpii_softc { struct device sc_dev; pci_chipset_tag_t sc_pc; pcitag_t sc_tag; void *sc_ih; int sc_flags; #define MPII_F_RAID (1<<1) #define MPII_F_SAS3 (1<<2) #define MPII_F_AERO (1<<3) struct scsibus_softc *sc_scsibus; unsigned int sc_pending; struct mpii_device **sc_devs; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_size_t sc_ios; bus_dma_tag_t sc_dmat; struct mutex sc_req_mtx; struct mutex sc_rep_mtx; ushort sc_reply_size; ushort sc_request_size; ushort sc_max_cmds; ushort sc_num_reply_frames; u_int sc_reply_free_qdepth; u_int sc_reply_post_qdepth; ushort sc_chain_sge; ushort sc_max_sgl; int sc_max_chain; u_int8_t sc_ioc_event_replay; u_int8_t sc_porttype; u_int8_t sc_max_volumes; u_int16_t sc_max_devices; u_int16_t sc_vd_count; u_int16_t sc_vd_id_low; u_int16_t sc_pd_id_start; int sc_ioc_number; u_int8_t sc_vf_id; struct mpii_ccb *sc_ccbs; struct mpii_ccb_list sc_ccb_free; struct mutex sc_ccb_free_mtx; struct mutex sc_ccb_mtx; /* * this protects the ccb state and list entry * between mpii_scsi_cmd and scsidone. */ struct mpii_ccb_list sc_ccb_tmos; struct scsi_iohandler sc_ccb_tmo_handler; struct scsi_iopool sc_iopool; struct mpii_dmamem *sc_requests; struct mpii_dmamem *sc_replies; struct mpii_rcb *sc_rcbs; struct mpii_dmamem *sc_reply_postq; struct mpii_reply_descr *sc_reply_postq_kva; u_int sc_reply_post_host_index; struct mpii_dmamem *sc_reply_freeq; u_int sc_reply_free_host_index; struct mpii_rcb_list sc_evt_sas_queue; struct mutex sc_evt_sas_mtx; struct task sc_evt_sas_task; struct mpii_rcb_list sc_evt_ack_queue; struct mutex sc_evt_ack_mtx; struct scsi_iohandler sc_evt_ack_handler; /* scsi ioctl from sd device */ int (*sc_ioctl)(struct device *, u_long, caddr_t); int sc_nsensors; struct ksensor *sc_sensors; struct ksensordev sc_sensordev; }; int mpii_match(struct device *, void *, void *); void mpii_attach(struct device *, struct device *, void *); int mpii_detach(struct device *, int); int mpii_intr(void *); const struct cfattach mpii_ca = { sizeof(struct mpii_softc), mpii_match, mpii_attach, mpii_detach }; struct cfdriver mpii_cd = { NULL, "mpii", DV_DULL }; void mpii_scsi_cmd(struct scsi_xfer *); void mpii_scsi_cmd_done(struct mpii_ccb *); int mpii_scsi_probe(struct scsi_link *); int mpii_scsi_ioctl(struct scsi_link *, u_long, caddr_t, int); const struct scsi_adapter mpii_switch = { mpii_scsi_cmd, NULL, mpii_scsi_probe, NULL, mpii_scsi_ioctl }; struct mpii_dmamem * mpii_dmamem_alloc(struct mpii_softc *, size_t); void mpii_dmamem_free(struct mpii_softc *, struct mpii_dmamem *); int mpii_alloc_ccbs(struct mpii_softc *); void * mpii_get_ccb(void *); void mpii_put_ccb(void *, void *); int mpii_alloc_replies(struct mpii_softc *); int mpii_alloc_queues(struct mpii_softc *); void mpii_push_reply(struct mpii_softc *, struct mpii_rcb *); void mpii_push_replies(struct mpii_softc *); void mpii_scsi_cmd_tmo(void *); void mpii_scsi_cmd_tmo_handler(void *, void *); void mpii_scsi_cmd_tmo_done(struct mpii_ccb *); int mpii_insert_dev(struct mpii_softc *, struct mpii_device *); int mpii_remove_dev(struct mpii_softc *, struct mpii_device *); struct mpii_device * mpii_find_dev(struct mpii_softc *, u_int16_t); void mpii_start(struct mpii_softc *, struct mpii_ccb *); int mpii_poll(struct mpii_softc *, struct mpii_ccb *); void mpii_poll_done(struct mpii_ccb *); struct mpii_rcb * mpii_reply(struct mpii_softc *, struct mpii_reply_descr *); void mpii_wait(struct mpii_softc *, struct mpii_ccb *); void mpii_wait_done(struct mpii_ccb *); void mpii_init_queues(struct mpii_softc *); int mpii_load_xs(struct mpii_ccb *); int mpii_load_xs_sas3(struct mpii_ccb *); u_int32_t mpii_read(struct mpii_softc *, bus_size_t); void mpii_write(struct mpii_softc *, bus_size_t, u_int32_t); int mpii_wait_eq(struct mpii_softc *, bus_size_t, u_int32_t, u_int32_t); int mpii_wait_ne(struct mpii_softc *, bus_size_t, u_int32_t, u_int32_t); int mpii_init(struct mpii_softc *); int mpii_reset_soft(struct mpii_softc *); int mpii_reset_hard(struct mpii_softc *); int mpii_handshake_send(struct mpii_softc *, void *, size_t); int mpii_handshake_recv_dword(struct mpii_softc *, u_int32_t *); int mpii_handshake_recv(struct mpii_softc *, void *, size_t); void mpii_empty_done(struct mpii_ccb *); int mpii_iocinit(struct mpii_softc *); int mpii_iocfacts(struct mpii_softc *); int mpii_portfacts(struct mpii_softc *); int mpii_portenable(struct mpii_softc *); int mpii_cfg_coalescing(struct mpii_softc *); int mpii_board_info(struct mpii_softc *); int mpii_target_map(struct mpii_softc *); int mpii_eventnotify(struct mpii_softc *); void mpii_eventnotify_done(struct mpii_ccb *); void mpii_eventack(void *, void *); void mpii_eventack_done(struct mpii_ccb *); void mpii_event_process(struct mpii_softc *, struct mpii_rcb *); void mpii_event_done(struct mpii_softc *, struct mpii_rcb *); void mpii_event_sas(void *); void mpii_event_raid(struct mpii_softc *, struct mpii_msg_event_reply *); void mpii_event_discovery(struct mpii_softc *, struct mpii_msg_event_reply *); void mpii_sas_remove_device(struct mpii_softc *, u_int16_t); int mpii_req_cfg_header(struct mpii_softc *, u_int8_t, u_int8_t, u_int32_t, int, void *); int mpii_req_cfg_page(struct mpii_softc *, u_int32_t, int, void *, int, void *, size_t); int mpii_ioctl_cache(struct scsi_link *, u_long, struct dk_cache *); #if NBIO > 0 int mpii_ioctl(struct device *, u_long, caddr_t); int mpii_ioctl_inq(struct mpii_softc *, struct bioc_inq *); int mpii_ioctl_vol(struct mpii_softc *, struct bioc_vol *); int mpii_ioctl_disk(struct mpii_softc *, struct bioc_disk *); int mpii_bio_hs(struct mpii_softc *, struct bioc_disk *, int, int, int *); int mpii_bio_disk(struct mpii_softc *, struct bioc_disk *, u_int8_t); struct mpii_device * mpii_find_vol(struct mpii_softc *, int); #ifndef SMALL_KERNEL int mpii_bio_volstate(struct mpii_softc *, struct bioc_vol *); int mpii_create_sensors(struct mpii_softc *); void mpii_refresh_sensors(void *); #endif /* SMALL_KERNEL */ #endif /* NBIO > 0 */ #define DEVNAME(s) ((s)->sc_dev.dv_xname) #define dwordsof(s) (sizeof(s) / sizeof(u_int32_t)) #define mpii_read_db(s) mpii_read((s), MPII_DOORBELL) #define mpii_write_db(s, v) mpii_write((s), MPII_DOORBELL, (v)) #define mpii_read_intr(s) mpii_read((s), MPII_INTR_STATUS) #define mpii_write_intr(s, v) mpii_write((s), MPII_INTR_STATUS, (v)) #define mpii_reply_waiting(s) ((mpii_read_intr((s)) & MPII_INTR_STATUS_REPLY)\ == MPII_INTR_STATUS_REPLY) #define mpii_write_reply_free(s, v) \ bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \ MPII_REPLY_FREE_HOST_INDEX, (v)) #define mpii_write_reply_post(s, v) \ bus_space_write_4((s)->sc_iot, (s)->sc_ioh, \ MPII_REPLY_POST_HOST_INDEX, (v)) #define mpii_wait_db_int(s) mpii_wait_ne((s), MPII_INTR_STATUS, \ MPII_INTR_STATUS_IOC2SYSDB, 0) #define mpii_wait_db_ack(s) mpii_wait_eq((s), MPII_INTR_STATUS, \ MPII_INTR_STATUS_SYS2IOCDB, 0) static inline void mpii_dvatosge(struct mpii_sge *sge, u_int64_t dva) { htolem32(&sge->sg_addr_lo, dva); htolem32(&sge->sg_addr_hi, dva >> 32); } #define MPII_PG_EXTENDED (1<<0) #define MPII_PG_POLL (1<<1) #define MPII_PG_FMT "\020" "\002POLL" "\001EXTENDED" static const struct pci_matchid mpii_devices[] = { { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2004 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2008 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SSS6200 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_3 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_4 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2108_5 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2116_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_3 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_4 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_5 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2208_6 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS2308_3 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3004 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3008 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_2 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_3 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3108_4 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3408 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3416 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3508_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS3516_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS38XX }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS38XX_1 }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS39XX }, { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_SAS39XX_1 }, }; int mpii_match(struct device *parent, void *match, void *aux) { return (pci_matchbyid(aux, mpii_devices, nitems(mpii_devices))); } void mpii_attach(struct device *parent, struct device *self, void *aux) { struct mpii_softc *sc = (struct mpii_softc *)self; struct pci_attach_args *pa = aux; pcireg_t memtype; int r; pci_intr_handle_t ih; struct scsibus_attach_args saa; struct mpii_ccb *ccb; sc->sc_pc = pa->pa_pc; sc->sc_tag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; mtx_init(&sc->sc_req_mtx, IPL_BIO); mtx_init(&sc->sc_rep_mtx, IPL_BIO); /* find the appropriate memory base */ for (r = PCI_MAPREG_START; r < PCI_MAPREG_END; r += sizeof(memtype)) { memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, r); if ((memtype & PCI_MAPREG_TYPE_MASK) == PCI_MAPREG_TYPE_MEM) break; } if (r >= PCI_MAPREG_END) { printf(": unable to locate system interface registers\n"); return; } if (pci_mapreg_map(pa, r, memtype, 0, &sc->sc_iot, &sc->sc_ioh, NULL, &sc->sc_ios, 0xFF) != 0) { printf(": unable to map system interface registers\n"); return; } /* disable the expansion rom */ pci_conf_write(sc->sc_pc, sc->sc_tag, PCI_ROM_REG, pci_conf_read(sc->sc_pc, sc->sc_tag, PCI_ROM_REG) & ~PCI_ROM_ENABLE); /* disable interrupts */ mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_RESET | MPII_INTR_MASK_REPLY | MPII_INTR_MASK_DOORBELL); /* hook up the interrupt */ if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { printf(": unable to map interrupt\n"); goto unmap; } printf(": %s\n", pci_intr_string(sc->sc_pc, ih)); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_SYMBIOS_SAS38XX: case PCI_PRODUCT_SYMBIOS_SAS38XX_1: case PCI_PRODUCT_SYMBIOS_SAS39XX: case PCI_PRODUCT_SYMBIOS_SAS39XX_1: SET(sc->sc_flags, MPII_F_AERO); break; } if (mpii_iocfacts(sc) != 0) { printf("%s: unable to get iocfacts\n", DEVNAME(sc)); goto unmap; } if (mpii_init(sc) != 0) { printf("%s: unable to initialize ioc\n", DEVNAME(sc)); goto unmap; } if (mpii_alloc_ccbs(sc) != 0) { /* error already printed */ goto unmap; } if (mpii_alloc_replies(sc) != 0) { printf("%s: unable to allocated reply space\n", DEVNAME(sc)); goto free_ccbs; } if (mpii_alloc_queues(sc) != 0) { printf("%s: unable to allocate reply queues\n", DEVNAME(sc)); goto free_replies; } if (mpii_iocinit(sc) != 0) { printf("%s: unable to send iocinit\n", DEVNAME(sc)); goto free_queues; } if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_OPER) != 0) { printf("%s: state: 0x%08x\n", DEVNAME(sc), mpii_read_db(sc) & MPII_DOORBELL_STATE); printf("%s: operational state timeout\n", DEVNAME(sc)); goto free_queues; } mpii_push_replies(sc); mpii_init_queues(sc); if (mpii_board_info(sc) != 0) { printf("%s: unable to get manufacturing page 0\n", DEVNAME(sc)); goto free_queues; } if (mpii_portfacts(sc) != 0) { printf("%s: unable to get portfacts\n", DEVNAME(sc)); goto free_queues; } if (mpii_target_map(sc) != 0) { printf("%s: unable to setup target mappings\n", DEVNAME(sc)); goto free_queues; } if (mpii_cfg_coalescing(sc) != 0) { printf("%s: unable to configure coalescing\n", DEVNAME(sc)); goto free_queues; } /* XXX bail on unsupported porttype? */ if ((sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL) || (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL) || (sc->sc_porttype == MPII_PORTFACTS_PORTTYPE_TRI_MODE)) { if (mpii_eventnotify(sc) != 0) { printf("%s: unable to enable events\n", DEVNAME(sc)); goto free_queues; } } sc->sc_devs = mallocarray(sc->sc_max_devices, sizeof(struct mpii_device *), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_devs == NULL) { printf("%s: unable to allocate memory for mpii_device\n", DEVNAME(sc)); goto free_queues; } if (mpii_portenable(sc) != 0) { printf("%s: unable to enable port\n", DEVNAME(sc)); goto free_devs; } sc->sc_ih = pci_intr_establish(sc->sc_pc, ih, IPL_BIO, mpii_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) goto free_devs; /* force autoconf to wait for the first sas discovery to complete */ sc->sc_pending = 1; config_pending_incr(); saa.saa_adapter = &mpii_switch; saa.saa_adapter_softc = sc; saa.saa_adapter_target = SDEV_NO_ADAPTER_TARGET; saa.saa_adapter_buswidth = sc->sc_max_devices; saa.saa_luns = 1; saa.saa_openings = sc->sc_max_cmds - 1; saa.saa_pool = &sc->sc_iopool; saa.saa_quirks = saa.saa_flags = 0; saa.saa_wwpn = saa.saa_wwnn = 0; sc->sc_scsibus = (struct scsibus_softc *) config_found(&sc->sc_dev, &saa, scsiprint); /* enable interrupts */ mpii_write(sc, MPII_INTR_MASK, MPII_INTR_MASK_DOORBELL | MPII_INTR_MASK_RESET); #if NBIO > 0 if (ISSET(sc->sc_flags, MPII_F_RAID)) { if (bio_register(&sc->sc_dev, mpii_ioctl) != 0) panic("%s: controller registration failed", DEVNAME(sc)); else sc->sc_ioctl = mpii_ioctl; #ifndef SMALL_KERNEL if (mpii_create_sensors(sc) != 0) printf("%s: unable to create sensors\n", DEVNAME(sc)); #endif } #endif return; free_devs: free(sc->sc_devs, M_DEVBUF, 0); sc->sc_devs = NULL; free_queues: bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_freeq), 0, sc->sc_reply_free_qdepth * 4, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_reply_freeq); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, sc->sc_reply_post_qdepth * 8, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_reply_postq); free_replies: bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 0, PAGE_SIZE, BUS_DMASYNC_POSTREAD); mpii_dmamem_free(sc, sc->sc_replies); free_ccbs: while ((ccb = mpii_get_ccb(sc)) != NULL) bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); mpii_dmamem_free(sc, sc->sc_requests); free(sc->sc_ccbs, M_DEVBUF, 0); unmap: bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); sc->sc_ios = 0; } int mpii_detach(struct device *self, int flags) { struct mpii_softc *sc = (struct mpii_softc *)self; if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pc, sc->sc_ih); sc->sc_ih = NULL; } if (sc->sc_ios != 0) { bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); sc->sc_ios = 0; } return (0); } int mpii_intr(void *arg) { struct mpii_rcb_list evts = SIMPLEQ_HEAD_INITIALIZER(evts); struct mpii_ccb_list ccbs = SIMPLEQ_HEAD_INITIALIZER(ccbs); struct mpii_softc *sc = arg; struct mpii_reply_descr *postq = sc->sc_reply_postq_kva, *rdp; struct mpii_ccb *ccb; struct mpii_rcb *rcb; int smid; u_int idx; int rv = 0; mtx_enter(&sc->sc_rep_mtx); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, sc->sc_reply_post_qdepth * sizeof(*rdp), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); idx = sc->sc_reply_post_host_index; for (;;) { rdp = &postq[idx]; if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == MPII_REPLY_DESCR_UNUSED) break; if (rdp->data == 0xffffffff) { /* * ioc is still writing to the reply post queue * race condition - bail! */ break; } smid = lemtoh16(&rdp->smid); rcb = mpii_reply(sc, rdp); if (smid) { ccb = &sc->sc_ccbs[smid - 1]; ccb->ccb_state = MPII_CCB_READY; ccb->ccb_rcb = rcb; SIMPLEQ_INSERT_TAIL(&ccbs, ccb, ccb_link); } else SIMPLEQ_INSERT_TAIL(&evts, rcb, rcb_link); if (++idx >= sc->sc_reply_post_qdepth) idx = 0; rv = 1; } bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 0, sc->sc_reply_post_qdepth * sizeof(*rdp), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (rv) mpii_write_reply_post(sc, sc->sc_reply_post_host_index = idx); mtx_leave(&sc->sc_rep_mtx); if (rv == 0) return (0); while ((ccb = SIMPLEQ_FIRST(&ccbs)) != NULL) { SIMPLEQ_REMOVE_HEAD(&ccbs, ccb_link); ccb->ccb_done(ccb); } while ((rcb = SIMPLEQ_FIRST(&evts)) != NULL) { SIMPLEQ_REMOVE_HEAD(&evts, rcb_link); mpii_event_process(sc, rcb); } return (1); } int mpii_load_xs_sas3(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; struct scsi_xfer *xs = ccb->ccb_cookie; struct mpii_msg_scsi_io *io = ccb->ccb_cmd; struct mpii_ieee_sge *csge, *nsge, *sge; bus_dmamap_t dmap = ccb->ccb_dmamap; int i, error; /* Request frame structure is described in the mpii_iocfacts */ nsge = (struct mpii_ieee_sge *)(io + 1); /* zero length transfer still requires an SGE */ if (xs->datalen == 0) { nsge->sg_flags = MPII_IEEE_SGE_END_OF_LIST; return (0); } error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); return (1); } csge = NULL; if (dmap->dm_nsegs > sc->sc_chain_sge) { csge = nsge + sc->sc_chain_sge; /* offset to the chain sge from the beginning */ io->chain_offset = ((caddr_t)csge - (caddr_t)io) / sizeof(*sge); } for (i = 0; i < dmap->dm_nsegs; i++, nsge++) { if (nsge == csge) { nsge++; /* address of the next sge */ htolem64(&csge->sg_addr, ccb->ccb_cmd_dva + ((caddr_t)nsge - (caddr_t)io)); htolem32(&csge->sg_len, (dmap->dm_nsegs - i) * sizeof(*sge)); csge->sg_next_chain_offset = 0; csge->sg_flags = MPII_IEEE_SGE_CHAIN_ELEMENT | MPII_IEEE_SGE_ADDR_SYSTEM; if ((dmap->dm_nsegs - i) > sc->sc_max_chain) { csge->sg_next_chain_offset = sc->sc_max_chain; csge += sc->sc_max_chain; } } sge = nsge; sge->sg_flags = MPII_IEEE_SGE_ADDR_SYSTEM; sge->sg_next_chain_offset = 0; htolem32(&sge->sg_len, dmap->dm_segs[i].ds_len); htolem64(&sge->sg_addr, dmap->dm_segs[i].ds_addr); } /* terminate list */ sge->sg_flags |= MPII_IEEE_SGE_END_OF_LIST; bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); return (0); } int mpii_load_xs(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; struct scsi_xfer *xs = ccb->ccb_cookie; struct mpii_msg_scsi_io *io = ccb->ccb_cmd; struct mpii_sge *csge, *nsge, *sge; bus_dmamap_t dmap = ccb->ccb_dmamap; u_int32_t flags; u_int16_t len; int i, error; /* Request frame structure is described in the mpii_iocfacts */ nsge = (struct mpii_sge *)(io + 1); csge = nsge + sc->sc_chain_sge; /* zero length transfer still requires an SGE */ if (xs->datalen == 0) { nsge->sg_hdr = htole32(MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); return (0); } error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); return (1); } /* safe default starting flags */ flags = MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_SIZE_64; if (xs->flags & SCSI_DATA_OUT) flags |= MPII_SGE_FL_DIR_OUT; for (i = 0; i < dmap->dm_nsegs; i++, nsge++) { if (nsge == csge) { nsge++; /* offset to the chain sge from the beginning */ io->chain_offset = ((caddr_t)csge - (caddr_t)io) / 4; /* length of the sgl segment we're pointing to */ len = (dmap->dm_nsegs - i) * sizeof(*sge); htolem32(&csge->sg_hdr, MPII_SGE_FL_TYPE_CHAIN | MPII_SGE_FL_SIZE_64 | len); /* address of the next sge */ mpii_dvatosge(csge, ccb->ccb_cmd_dva + ((caddr_t)nsge - (caddr_t)io)); } sge = nsge; htolem32(&sge->sg_hdr, flags | dmap->dm_segs[i].ds_len); mpii_dvatosge(sge, dmap->dm_segs[i].ds_addr); } /* terminate list */ sge->sg_hdr |= htole32(MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); return (0); } int mpii_scsi_probe(struct scsi_link *link) { struct mpii_softc *sc = link->bus->sb_adapter_softc; struct mpii_cfg_sas_dev_pg0 pg0; struct mpii_ecfg_hdr ehdr; struct mpii_device *dev; uint32_t address; int flags; if ((sc->sc_porttype != MPII_PORTFACTS_PORTTYPE_SAS_PHYSICAL) && (sc->sc_porttype != MPII_PORTFACTS_PORTTYPE_SAS_VIRTUAL) && (sc->sc_porttype != MPII_PORTFACTS_PORTTYPE_TRI_MODE)) return (ENXIO); dev = sc->sc_devs[link->target]; if (dev == NULL) return (1); flags = dev->flags; if (ISSET(flags, MPII_DF_HIDDEN) || ISSET(flags, MPII_DF_UNUSED)) return (1); if (ISSET(flags, MPII_DF_VOLUME)) { struct mpii_cfg_hdr hdr; struct mpii_cfg_raid_vol_pg1 vpg; size_t pagelen; address = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 1, address, MPII_PG_POLL, &hdr) != 0) return (EINVAL); memset(&vpg, 0, sizeof(vpg)); /* avoid stack trash on future page growth */ pagelen = min(sizeof(vpg), hdr.page_length * 4); if (mpii_req_cfg_page(sc, address, MPII_PG_POLL, &hdr, 1, &vpg, pagelen) != 0) return (EINVAL); link->port_wwn = letoh64(vpg.wwid); /* * WWIDs generated by LSI firmware are not IEEE NAA compliant * and historical practise in OBP on sparc64 is to set the top * nibble to 3 to indicate that this is a RAID volume. */ link->port_wwn &= 0x0fffffffffffffff; link->port_wwn |= 0x3000000000000000; return (0); } memset(&ehdr, 0, sizeof(ehdr)); ehdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED; ehdr.page_number = 0; ehdr.page_version = 0; ehdr.ext_page_type = MPII_CONFIG_REQ_EXTPAGE_TYPE_SAS_DEVICE; ehdr.ext_page_length = htole16(sizeof(pg0) / 4); /* dwords */ address = MPII_PGAD_SAS_DEVICE_FORM_HANDLE | (uint32_t)dev->dev_handle; if (mpii_req_cfg_page(sc, address, MPII_PG_EXTENDED, &ehdr, 1, &pg0, sizeof(pg0)) != 0) { printf("%s: unable to fetch SAS device page 0 for target %u\n", DEVNAME(sc), link->target); return (0); /* the handle should still work */ } link->port_wwn = letoh64(pg0.sas_addr); link->node_wwn = letoh64(pg0.device_name); if (ISSET(lemtoh32(&pg0.device_info), MPII_CFG_SAS_DEV_0_DEVINFO_ATAPI_DEVICE)) { link->flags |= SDEV_ATAPI; } return (0); } u_int32_t mpii_read(struct mpii_softc *sc, bus_size_t r) { u_int32_t rv; int i; if (ISSET(sc->sc_flags, MPII_F_AERO)) { i = 0; do { if (i > 0) DNPRINTF(MPII_D_RW, "%s: mpii_read retry %d\n", DEVNAME(sc), i); bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_READ); rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); i++; } while (rv == 0 && i < 3); } else { bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_READ); rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); } DNPRINTF(MPII_D_RW, "%s: mpii_read %#lx %#x\n", DEVNAME(sc), r, rv); return (rv); } void mpii_write(struct mpii_softc *sc, bus_size_t r, u_int32_t v) { DNPRINTF(MPII_D_RW, "%s: mpii_write %#lx %#x\n", DEVNAME(sc), r, v); bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v); bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_WRITE); } int mpii_wait_eq(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, u_int32_t target) { int i; DNPRINTF(MPII_D_RW, "%s: mpii_wait_eq %#lx %#x %#x\n", DEVNAME(sc), r, mask, target); for (i = 0; i < 15000; i++) { if ((mpii_read(sc, r) & mask) == target) return (0); delay(1000); } return (1); } int mpii_wait_ne(struct mpii_softc *sc, bus_size_t r, u_int32_t mask, u_int32_t target) { int i; DNPRINTF(MPII_D_RW, "%s: mpii_wait_ne %#lx %#x %#x\n", DEVNAME(sc), r, mask, target); for (i = 0; i < 15000; i++) { if ((mpii_read(sc, r) & mask) != target) return (0); delay(1000); } return (1); } int mpii_init(struct mpii_softc *sc) { u_int32_t db; int i; /* spin until the ioc leaves the reset state */ if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_RESET) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_init timeout waiting to leave " "reset state\n", DEVNAME(sc)); return (1); } /* check current ownership */ db = mpii_read_db(sc); if ((db & MPII_DOORBELL_WHOINIT) == MPII_DOORBELL_WHOINIT_PCIPEER) { DNPRINTF(MPII_D_MISC, "%s: mpii_init initialised by pci peer\n", DEVNAME(sc)); return (0); } for (i = 0; i < 5; i++) { switch (db & MPII_DOORBELL_STATE) { case MPII_DOORBELL_STATE_READY: DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is ready\n", DEVNAME(sc)); return (0); case MPII_DOORBELL_STATE_OPER: DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is oper\n", DEVNAME(sc)); if (sc->sc_ioc_event_replay) mpii_reset_soft(sc); else mpii_reset_hard(sc); break; case MPII_DOORBELL_STATE_FAULT: DNPRINTF(MPII_D_MISC, "%s: mpii_init ioc is being " "reset hard\n" , DEVNAME(sc)); mpii_reset_hard(sc); break; case MPII_DOORBELL_STATE_RESET: DNPRINTF(MPII_D_MISC, "%s: mpii_init waiting to come " "out of reset\n", DEVNAME(sc)); if (mpii_wait_ne(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_RESET) != 0) return (1); break; } db = mpii_read_db(sc); } return (1); } int mpii_reset_soft(struct mpii_softc *sc) { DNPRINTF(MPII_D_MISC, "%s: mpii_reset_soft\n", DEVNAME(sc)); if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) { return (1); } mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_IOC_MESSAGE_UNIT_RESET)); /* XXX LSI waits 15 sec */ if (mpii_wait_db_ack(sc) != 0) return (1); /* XXX LSI waits 15 sec */ if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_STATE, MPII_DOORBELL_STATE_READY) != 0) return (1); /* XXX wait for Sys2IOCDB bit to clear in HIS?? */ return (0); } int mpii_reset_hard(struct mpii_softc *sc) { u_int16_t i; DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard\n", DEVNAME(sc)); mpii_write_intr(sc, 0); /* enable diagnostic register */ mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_FLUSH); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_1); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_2); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_3); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_4); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_5); mpii_write(sc, MPII_WRITESEQ, MPII_WRITESEQ_6); delay(100); if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_DWRE) == 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_reset_hard failure to enable " "diagnostic read/write\n", DEVNAME(sc)); return(1); } /* reset ioc */ mpii_write(sc, MPII_HOSTDIAG, MPII_HOSTDIAG_RESET_ADAPTER); /* 240 milliseconds */ delay(240000); /* XXX this whole function should be more robust */ /* XXX read the host diagnostic reg until reset adapter bit clears ? */ for (i = 0; i < 30000; i++) { if ((mpii_read(sc, MPII_HOSTDIAG) & MPII_HOSTDIAG_RESET_ADAPTER) == 0) break; delay(10000); } /* disable diagnostic register */ mpii_write(sc, MPII_WRITESEQ, 0xff); /* XXX what else? */ DNPRINTF(MPII_D_MISC, "%s: done with mpii_reset_hard\n", DEVNAME(sc)); return(0); } int mpii_handshake_send(struct mpii_softc *sc, void *buf, size_t dwords) { u_int32_t *query = buf; int i; /* make sure the doorbell is not in use. */ if (mpii_read_db(sc) & MPII_DOORBELL_INUSE) return (1); /* clear pending doorbell interrupts */ if (mpii_read_intr(sc) & MPII_INTR_STATUS_IOC2SYSDB) mpii_write_intr(sc, 0); /* * first write the doorbell with the handshake function and the * dword count. */ mpii_write_db(sc, MPII_DOORBELL_FUNCTION(MPII_FUNCTION_HANDSHAKE) | MPII_DOORBELL_DWORDS(dwords)); /* * the doorbell used bit will be set because a doorbell function has * started. wait for the interrupt and then ack it. */ if (mpii_wait_db_int(sc) != 0) return (1); mpii_write_intr(sc, 0); /* poll for the acknowledgement. */ if (mpii_wait_db_ack(sc) != 0) return (1); /* write the query through the doorbell. */ for (i = 0; i < dwords; i++) { mpii_write_db(sc, htole32(query[i])); if (mpii_wait_db_ack(sc) != 0) return (1); } return (0); } int mpii_handshake_recv_dword(struct mpii_softc *sc, u_int32_t *dword) { u_int16_t *words = (u_int16_t *)dword; int i; for (i = 0; i < 2; i++) { if (mpii_wait_db_int(sc) != 0) return (1); words[i] = letoh16(mpii_read_db(sc) & MPII_DOORBELL_DATA_MASK); mpii_write_intr(sc, 0); } return (0); } int mpii_handshake_recv(struct mpii_softc *sc, void *buf, size_t dwords) { struct mpii_msg_reply *reply = buf; u_int32_t *dbuf = buf, dummy; int i; /* get the first dword so we can read the length out of the header. */ if (mpii_handshake_recv_dword(sc, &dbuf[0]) != 0) return (1); DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dwords: %lu reply: %d\n", DEVNAME(sc), dwords, reply->msg_length); /* * the total length, in dwords, is in the message length field of the * reply header. */ for (i = 1; i < MIN(dwords, reply->msg_length); i++) { if (mpii_handshake_recv_dword(sc, &dbuf[i]) != 0) return (1); } /* if there's extra stuff to come off the ioc, discard it */ while (i++ < reply->msg_length) { if (mpii_handshake_recv_dword(sc, &dummy) != 0) return (1); DNPRINTF(MPII_D_CMD, "%s: mpii_handshake_recv dummy read: " "0x%08x\n", DEVNAME(sc), dummy); } /* wait for the doorbell used bit to be reset and clear the intr */ if (mpii_wait_db_int(sc) != 0) return (1); if (mpii_wait_eq(sc, MPII_DOORBELL, MPII_DOORBELL_INUSE, 0) != 0) return (1); mpii_write_intr(sc, 0); return (0); } void mpii_empty_done(struct mpii_ccb *ccb) { /* nothing to do */ } int mpii_iocfacts(struct mpii_softc *sc) { struct mpii_msg_iocfacts_request ifq; struct mpii_msg_iocfacts_reply ifp; int irs; int sge_size; u_int qdepth; DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts\n", DEVNAME(sc)); memset(&ifq, 0, sizeof(ifq)); memset(&ifp, 0, sizeof(ifp)); ifq.function = MPII_FUNCTION_IOC_FACTS; if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts send failed\n", DEVNAME(sc)); return (1); } if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocfacts recv failed\n", DEVNAME(sc)); return (1); } sc->sc_ioc_number = ifp.ioc_number; sc->sc_vf_id = ifp.vf_id; sc->sc_max_volumes = ifp.max_volumes; sc->sc_max_devices = ifp.max_volumes + lemtoh16(&ifp.max_targets); if (ISSET(lemtoh32(&ifp.ioc_capabilities), MPII_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) SET(sc->sc_flags, MPII_F_RAID); if (ISSET(lemtoh32(&ifp.ioc_capabilities), MPII_IOCFACTS_CAPABILITY_EVENT_REPLAY)) sc->sc_ioc_event_replay = 1; sc->sc_max_cmds = MIN(lemtoh16(&ifp.request_credit), MPII_REQUEST_CREDIT); /* SAS3 and 3.5 controllers have different sgl layouts */ if (ifp.msg_version_maj == 2 && ((ifp.msg_version_min == 5) || (ifp.msg_version_min == 6))) SET(sc->sc_flags, MPII_F_SAS3); /* * The host driver must ensure that there is at least one * unused entry in the Reply Free Queue. One way to ensure * that this requirement is met is to never allocate a number * of reply frames that is a multiple of 16. */ sc->sc_num_reply_frames = sc->sc_max_cmds + 32; if (!(sc->sc_num_reply_frames % 16)) sc->sc_num_reply_frames--; /* must be multiple of 16 */ sc->sc_reply_post_qdepth = sc->sc_max_cmds + sc->sc_num_reply_frames; sc->sc_reply_post_qdepth += 16 - (sc->sc_reply_post_qdepth % 16); qdepth = lemtoh16(&ifp.max_reply_descriptor_post_queue_depth); if (sc->sc_reply_post_qdepth > qdepth) { sc->sc_reply_post_qdepth = qdepth; if (sc->sc_reply_post_qdepth < 16) { printf("%s: RDPQ is too shallow\n", DEVNAME(sc)); return (1); } sc->sc_max_cmds = sc->sc_reply_post_qdepth / 2 - 4; sc->sc_num_reply_frames = sc->sc_max_cmds + 4; } sc->sc_reply_free_qdepth = sc->sc_num_reply_frames + 16 - (sc->sc_num_reply_frames % 16); /* * Our request frame for an I/O operation looks like this: * * +-------------------+ -. * | mpii_msg_scsi_io | | * +-------------------| | * | mpii_sge | | * + - - - - - - - - - + | * | ... | > ioc_request_frame_size * + - - - - - - - - - + | * | mpii_sge (tail) | | * + - - - - - - - - - + | * | mpii_sge (csge) | | --. * + - - - - - - - - - + -' | chain sge points to the next sge * | mpii_sge |<-----' * + - - - - - - - - - + * | ... | * + - - - - - - - - - + * | mpii_sge (tail) | * +-------------------+ * | | * ~~~~~~~~~~~~~~~~~~~~~ * | | * +-------------------+ <- sc_request_size - sizeof(scsi_sense_data) * | scsi_sense_data | * +-------------------+ * * If the controller gives us a maximum chain size, there can be * multiple chain sges, each of which points to the sge following it. * Otherwise, there will only be one chain sge. */ /* both sizes are in 32-bit words */ sc->sc_reply_size = ifp.reply_frame_size * 4; irs = lemtoh16(&ifp.ioc_request_frame_size) * 4; sc->sc_request_size = MPII_REQUEST_SIZE; /* make sure we have enough space for scsi sense data */ if (irs > sc->sc_request_size) { sc->sc_request_size = irs + sizeof(struct scsi_sense_data); sc->sc_request_size += 16 - (sc->sc_request_size % 16); } if (ISSET(sc->sc_flags, MPII_F_SAS3)) { sge_size = sizeof(struct mpii_ieee_sge); } else { sge_size = sizeof(struct mpii_sge); } /* offset to the chain sge */ sc->sc_chain_sge = (irs - sizeof(struct mpii_msg_scsi_io)) / sge_size - 1; sc->sc_max_chain = lemtoh16(&ifp.ioc_max_chain_seg_size); /* * A number of simple scatter-gather elements we can fit into the * request buffer after the I/O command minus the chain element(s). */ sc->sc_max_sgl = (sc->sc_request_size - sizeof(struct mpii_msg_scsi_io) - sizeof(struct scsi_sense_data)) / sge_size - 1; if (sc->sc_max_chain > 0) { sc->sc_max_sgl -= (sc->sc_max_sgl - sc->sc_chain_sge) / sc->sc_max_chain; } return (0); } int mpii_iocinit(struct mpii_softc *sc) { struct mpii_msg_iocinit_request iiq; struct mpii_msg_iocinit_reply iip; DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit\n", DEVNAME(sc)); memset(&iiq, 0, sizeof(iiq)); memset(&iip, 0, sizeof(iip)); iiq.function = MPII_FUNCTION_IOC_INIT; iiq.whoinit = MPII_WHOINIT_HOST_DRIVER; /* XXX JPG do something about vf_id */ iiq.vf_id = 0; iiq.msg_version_maj = 0x02; iiq.msg_version_min = 0x00; /* XXX JPG ensure compliance with some level and hard-code? */ iiq.hdr_version_unit = 0x00; iiq.hdr_version_dev = 0x00; htolem16(&iiq.system_request_frame_size, sc->sc_request_size / 4); htolem16(&iiq.reply_descriptor_post_queue_depth, sc->sc_reply_post_qdepth); htolem16(&iiq.reply_free_queue_depth, sc->sc_reply_free_qdepth); htolem32(&iiq.sense_buffer_address_high, MPII_DMA_DVA(sc->sc_requests) >> 32); htolem32(&iiq.system_reply_address_high, MPII_DMA_DVA(sc->sc_replies) >> 32); htolem32(&iiq.system_request_frame_base_address_lo, MPII_DMA_DVA(sc->sc_requests)); htolem32(&iiq.system_request_frame_base_address_hi, MPII_DMA_DVA(sc->sc_requests) >> 32); htolem32(&iiq.reply_descriptor_post_queue_address_lo, MPII_DMA_DVA(sc->sc_reply_postq)); htolem32(&iiq.reply_descriptor_post_queue_address_hi, MPII_DMA_DVA(sc->sc_reply_postq) >> 32); htolem32(&iiq.reply_free_queue_address_lo, MPII_DMA_DVA(sc->sc_reply_freeq)); htolem32(&iiq.reply_free_queue_address_hi, MPII_DMA_DVA(sc->sc_reply_freeq) >> 32); if (mpii_handshake_send(sc, &iiq, dwordsof(iiq)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit send failed\n", DEVNAME(sc)); return (1); } if (mpii_handshake_recv(sc, &iip, dwordsof(iip)) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_iocinit recv failed\n", DEVNAME(sc)); return (1); } DNPRINTF(MPII_D_MISC, "%s: function: 0x%02x msg_length: %d " "whoinit: 0x%02x\n", DEVNAME(sc), iip.function, iip.msg_length, iip.whoinit); DNPRINTF(MPII_D_MISC, "%s: msg_flags: 0x%02x\n", DEVNAME(sc), iip.msg_flags); DNPRINTF(MPII_D_MISC, "%s: vf_id: 0x%02x vp_id: 0x%02x\n", DEVNAME(sc), iip.vf_id, iip.vp_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), lemtoh16(&iip.ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), lemtoh32(&iip.ioc_loginfo)); if (lemtoh16(&iip.ioc_status) != MPII_IOCSTATUS_SUCCESS || lemtoh32(&iip.ioc_loginfo)) return (1); return (0); } void mpii_push_reply(struct mpii_softc *sc, struct mpii_rcb *rcb) { u_int32_t *rfp; u_int idx; if (rcb == NULL) return; idx = sc->sc_reply_free_host_index; rfp = MPII_DMA_KVA(sc->sc_reply_freeq); htolem32(&rfp[idx], rcb->rcb_reply_dva); if (++idx >= sc->sc_reply_free_qdepth) idx = 0; mpii_write_reply_free(sc, sc->sc_reply_free_host_index = idx); } int mpii_portfacts(struct mpii_softc *sc) { struct mpii_msg_portfacts_request *pfq; struct mpii_msg_portfacts_reply *pfp; struct mpii_ccb *ccb; int rv = 1; DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts\n", DEVNAME(sc)); ccb = scsi_io_get(&sc->sc_iopool, 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts mpii_get_ccb fail\n", DEVNAME(sc)); return (rv); } ccb->ccb_done = mpii_empty_done; pfq = ccb->ccb_cmd; memset(pfq, 0, sizeof(*pfq)); pfq->function = MPII_FUNCTION_PORT_FACTS; pfq->chain_offset = 0; pfq->msg_flags = 0; pfq->port_number = 0; pfq->vp_id = 0; pfq->vf_id = 0; if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_portfacts poll\n", DEVNAME(sc)); goto err; } if (ccb->ccb_rcb == NULL) { DNPRINTF(MPII_D_MISC, "%s: empty portfacts reply\n", DEVNAME(sc)); goto err; } pfp = ccb->ccb_rcb->rcb_reply; sc->sc_porttype = pfp->port_type; mpii_push_reply(sc, ccb->ccb_rcb); rv = 0; err: scsi_io_put(&sc->sc_iopool, ccb); return (rv); } void mpii_eventack(void *cookie, void *io) { struct mpii_softc *sc = cookie; struct mpii_ccb *ccb = io; struct mpii_rcb *rcb, *next; struct mpii_msg_event_reply *enp; struct mpii_msg_eventack_request *eaq; mtx_enter(&sc->sc_evt_ack_mtx); rcb = SIMPLEQ_FIRST(&sc->sc_evt_ack_queue); if (rcb != NULL) { next = SIMPLEQ_NEXT(rcb, rcb_link); SIMPLEQ_REMOVE_HEAD(&sc->sc_evt_ack_queue, rcb_link); } mtx_leave(&sc->sc_evt_ack_mtx); if (rcb == NULL) { scsi_io_put(&sc->sc_iopool, ccb); return; } enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; ccb->ccb_done = mpii_eventack_done; eaq = ccb->ccb_cmd; eaq->function = MPII_FUNCTION_EVENT_ACK; eaq->event = enp->event; eaq->event_context = enp->event_context; mpii_push_reply(sc, rcb); mpii_start(sc, ccb); if (next != NULL) scsi_ioh_add(&sc->sc_evt_ack_handler); } void mpii_eventack_done(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; DNPRINTF(MPII_D_EVT, "%s: event ack done\n", DEVNAME(sc)); mpii_push_reply(sc, ccb->ccb_rcb); scsi_io_put(&sc->sc_iopool, ccb); } int mpii_portenable(struct mpii_softc *sc) { struct mpii_msg_portenable_request *peq; struct mpii_ccb *ccb; DNPRINTF(MPII_D_MISC, "%s: mpii_portenable\n", DEVNAME(sc)); ccb = scsi_io_get(&sc->sc_iopool, 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_portenable ccb_get\n", DEVNAME(sc)); return (1); } ccb->ccb_done = mpii_empty_done; peq = ccb->ccb_cmd; peq->function = MPII_FUNCTION_PORT_ENABLE; peq->vf_id = sc->sc_vf_id; if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_portenable poll\n", DEVNAME(sc)); return (1); } if (ccb->ccb_rcb == NULL) { DNPRINTF(MPII_D_MISC, "%s: empty portenable reply\n", DEVNAME(sc)); return (1); } mpii_push_reply(sc, ccb->ccb_rcb); scsi_io_put(&sc->sc_iopool, ccb); return (0); } int mpii_cfg_coalescing(struct mpii_softc *sc) { struct mpii_cfg_hdr hdr; struct mpii_cfg_ioc_pg1 ipg; hdr.page_version = 0; hdr.page_length = sizeof(ipg) / 4; hdr.page_number = 1; hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC; memset(&ipg, 0, sizeof(ipg)); if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg, sizeof(ipg)) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch IOC page 1\n" "page 1\n", DEVNAME(sc)); return (1); } if (!ISSET(lemtoh32(&ipg.flags), MPII_CFG_IOC_1_REPLY_COALESCING)) return (0); /* Disable coalescing */ CLR(ipg.flags, htole32(MPII_CFG_IOC_1_REPLY_COALESCING)); if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 0, &ipg, sizeof(ipg)) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to clear coalescing\n", DEVNAME(sc)); return (1); } return (0); } #define MPII_EVENT_MASKALL(enq) do { \ enq->event_masks[0] = 0xffffffff; \ enq->event_masks[1] = 0xffffffff; \ enq->event_masks[2] = 0xffffffff; \ enq->event_masks[3] = 0xffffffff; \ } while (0) #define MPII_EVENT_UNMASK(enq, evt) do { \ enq->event_masks[evt / 32] &= \ htole32(~(1 << (evt % 32))); \ } while (0) int mpii_eventnotify(struct mpii_softc *sc) { struct mpii_msg_event_request *enq; struct mpii_ccb *ccb; ccb = scsi_io_get(&sc->sc_iopool, 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_eventnotify ccb_get\n", DEVNAME(sc)); return (1); } SIMPLEQ_INIT(&sc->sc_evt_sas_queue); mtx_init(&sc->sc_evt_sas_mtx, IPL_BIO); task_set(&sc->sc_evt_sas_task, mpii_event_sas, sc); SIMPLEQ_INIT(&sc->sc_evt_ack_queue); mtx_init(&sc->sc_evt_ack_mtx, IPL_BIO); scsi_ioh_set(&sc->sc_evt_ack_handler, &sc->sc_iopool, mpii_eventack, sc); ccb->ccb_done = mpii_eventnotify_done; enq = ccb->ccb_cmd; enq->function = MPII_FUNCTION_EVENT_NOTIFICATION; /* * Enable reporting of the following events: * * MPII_EVENT_SAS_DISCOVERY * MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST * MPII_EVENT_SAS_DEVICE_STATUS_CHANGE * MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE * MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST * MPII_EVENT_IR_VOLUME * MPII_EVENT_IR_PHYSICAL_DISK * MPII_EVENT_IR_OPERATION_STATUS */ MPII_EVENT_MASKALL(enq); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DISCOVERY); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_DEVICE_STATUS_CHANGE); MPII_EVENT_UNMASK(enq, MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_VOLUME); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_PHYSICAL_DISK); MPII_EVENT_UNMASK(enq, MPII_EVENT_IR_OPERATION_STATUS); mpii_start(sc, ccb); return (0); } void mpii_eventnotify_done(struct mpii_ccb *ccb) { struct mpii_softc *sc = ccb->ccb_sc; struct mpii_rcb *rcb = ccb->ccb_rcb; DNPRINTF(MPII_D_EVT, "%s: mpii_eventnotify_done\n", DEVNAME(sc)); scsi_io_put(&sc->sc_iopool, ccb); mpii_event_process(sc, rcb); } void mpii_event_raid(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) { struct mpii_evt_ir_cfg_change_list *ccl; struct mpii_evt_ir_cfg_element *ce; struct mpii_device *dev; u_int16_t type; int i; ccl = (struct mpii_evt_ir_cfg_change_list *)(enp + 1); if (ccl->num_elements == 0) return; if (ISSET(lemtoh32(&ccl->flags), MPII_EVT_IR_CFG_CHANGE_LIST_FOREIGN)) { /* bail on foreign configurations */ return; } ce = (struct mpii_evt_ir_cfg_element *)(ccl + 1); for (i = 0; i < ccl->num_elements; i++, ce++) { type = (lemtoh16(&ce->element_flags) & MPII_EVT_IR_CFG_ELEMENT_TYPE_MASK); switch (type) { case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME: switch (ce->reason_code) { case MPII_EVT_IR_CFG_ELEMENT_RC_ADDED: case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_CREATED: if (mpii_find_dev(sc, lemtoh16(&ce->vol_dev_handle))) { printf("%s: device %#x is already " "configured\n", DEVNAME(sc), lemtoh16(&ce->vol_dev_handle)); break; } dev = malloc(sizeof(*dev), M_DEVBUF, M_NOWAIT | M_ZERO); if (!dev) { printf("%s: failed to allocate a " "device structure\n", DEVNAME(sc)); break; } SET(dev->flags, MPII_DF_VOLUME); dev->slot = sc->sc_vd_id_low; dev->dev_handle = lemtoh16(&ce->vol_dev_handle); if (mpii_insert_dev(sc, dev)) { free(dev, M_DEVBUF, sizeof *dev); break; } sc->sc_vd_count++; break; case MPII_EVT_IR_CFG_ELEMENT_RC_REMOVED: case MPII_EVT_IR_CFG_ELEMENT_RC_VOLUME_DELETED: if (!(dev = mpii_find_dev(sc, lemtoh16(&ce->vol_dev_handle)))) break; mpii_remove_dev(sc, dev); sc->sc_vd_count--; break; } break; case MPII_EVT_IR_CFG_ELEMENT_TYPE_VOLUME_DISK: if (ce->reason_code == MPII_EVT_IR_CFG_ELEMENT_RC_PD_CREATED || ce->reason_code == MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { /* there should be an underlying sas drive */ if (!(dev = mpii_find_dev(sc, lemtoh16(&ce->phys_disk_dev_handle)))) break; /* promoted from a hot spare? */ CLR(dev->flags, MPII_DF_HOT_SPARE); SET(dev->flags, MPII_DF_VOLUME_DISK | MPII_DF_HIDDEN); } break; case MPII_EVT_IR_CFG_ELEMENT_TYPE_HOT_SPARE: if (ce->reason_code == MPII_EVT_IR_CFG_ELEMENT_RC_HIDE) { /* there should be an underlying sas drive */ if (!(dev = mpii_find_dev(sc, lemtoh16(&ce->phys_disk_dev_handle)))) break; SET(dev->flags, MPII_DF_HOT_SPARE | MPII_DF_HIDDEN); } break; } } } void mpii_event_sas(void *xsc) { struct mpii_softc *sc = xsc; struct mpii_rcb *rcb, *next; struct mpii_msg_event_reply *enp; struct mpii_evt_sas_tcl *tcl; struct mpii_evt_phy_entry *pe; struct mpii_device *dev; int i; u_int16_t handle; mtx_enter(&sc->sc_evt_sas_mtx); rcb = SIMPLEQ_FIRST(&sc->sc_evt_sas_queue); if (rcb != NULL) { next = SIMPLEQ_NEXT(rcb, rcb_link); SIMPLEQ_REMOVE_HEAD(&sc->sc_evt_sas_queue, rcb_link); } mtx_leave(&sc->sc_evt_sas_mtx); if (rcb == NULL) return; if (next != NULL) task_add(systq, &sc->sc_evt_sas_task); enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; switch (lemtoh16(&enp->event)) { case MPII_EVENT_SAS_DISCOVERY: mpii_event_discovery(sc, enp); goto done; case MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST: /* handle below */ break; default: panic("%s: unexpected event %#x in sas event queue", DEVNAME(sc), lemtoh16(&enp->event)); /* NOTREACHED */ } tcl = (struct mpii_evt_sas_tcl *)(enp + 1); pe = (struct mpii_evt_phy_entry *)(tcl + 1); for (i = 0; i < tcl->num_entries; i++, pe++) { switch (pe->phy_status & MPII_EVENT_SAS_TOPO_PS_RC_MASK) { case MPII_EVENT_SAS_TOPO_PS_RC_ADDED: handle = lemtoh16(&pe->dev_handle); if (mpii_find_dev(sc, handle)) { printf("%s: device %#x is already " "configured\n", DEVNAME(sc), handle); break; } dev = malloc(sizeof(*dev), M_DEVBUF, M_WAITOK | M_ZERO); dev->slot = sc->sc_pd_id_start + tcl->start_phy_num + i; dev->dev_handle = handle; dev->phy_num = tcl->start_phy_num + i; if (tcl->enclosure_handle) dev->physical_port = tcl->physical_port; dev->enclosure = lemtoh16(&tcl->enclosure_handle); dev->expander = lemtoh16(&tcl->expander_handle); if (mpii_insert_dev(sc, dev)) { free(dev, M_DEVBUF, sizeof *dev); break; } if (sc->sc_scsibus != NULL) scsi_probe_target(sc->sc_scsibus, dev->slot); break; case MPII_EVENT_SAS_TOPO_PS_RC_MISSING: dev = mpii_find_dev(sc, lemtoh16(&pe->dev_handle)); if (dev == NULL) break; mpii_remove_dev(sc, dev); mpii_sas_remove_device(sc, dev->dev_handle); if (sc->sc_scsibus != NULL && !ISSET(dev->flags, MPII_DF_HIDDEN)) { scsi_activate(sc->sc_scsibus, dev->slot, -1, DVACT_DEACTIVATE); scsi_detach_target(sc->sc_scsibus, dev->slot, DETACH_FORCE); } free(dev, M_DEVBUF, sizeof *dev); break; } } done: mpii_event_done(sc, rcb); } void mpii_event_discovery(struct mpii_softc *sc, struct mpii_msg_event_reply *enp) { struct mpii_evt_sas_discovery *esd = (struct mpii_evt_sas_discovery *)(enp + 1); if (sc->sc_pending == 0) return; switch (esd->reason_code) { case MPII_EVENT_SAS_DISC_REASON_CODE_STARTED: ++sc->sc_pending; break; case MPII_EVENT_SAS_DISC_REASON_CODE_COMPLETED: if (--sc->sc_pending == 1) { sc->sc_pending = 0; config_pending_decr(); } break; } } void mpii_event_process(struct mpii_softc *sc, struct mpii_rcb *rcb) { struct mpii_msg_event_reply *enp; enp = (struct mpii_msg_event_reply *)rcb->rcb_reply; DNPRINTF(MPII_D_EVT, "%s: mpii_event_process: %#x\n", DEVNAME(sc), lemtoh16(&enp->event)); switch (lemtoh16(&enp->event)) { case MPII_EVENT_EVENT_CHANGE: /* should be properly ignored */ break; case MPII_EVENT_SAS_DISCOVERY: case MPII_EVENT_SAS_TOPOLOGY_CHANGE_LIST: mtx_enter(&sc->sc_evt_sas_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_evt_sas_queue, rcb, rcb_link); mtx_leave(&sc->sc_evt_sas_mtx); task_add(systq, &sc->sc_evt_sas_task); return; case MPII_EVENT_SAS_DEVICE_STATUS_CHANGE: break; case MPII_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: break; case MPII_EVENT_IR_VOLUME: { struct mpii_evt_ir_volume *evd = (struct mpii_evt_ir_volume *)(enp + 1); struct mpii_device *dev; #if NBIO > 0 const char *vol_states[] = { BIOC_SVINVALID_S, BIOC_SVOFFLINE_S, BIOC_SVBUILDING_S, BIOC_SVONLINE_S, BIOC_SVDEGRADED_S, BIOC_SVONLINE_S, }; #endif if (cold) break; KERNEL_LOCK(); dev = mpii_find_dev(sc, lemtoh16(&evd->vol_dev_handle)); KERNEL_UNLOCK(); if (dev == NULL) break; #if NBIO > 0 if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATE_CHANGED) printf("%s: volume %d state changed from %s to %s\n", DEVNAME(sc), dev->slot - sc->sc_vd_id_low, vol_states[evd->prev_value], vol_states[evd->new_value]); #endif if (evd->reason_code == MPII_EVENT_IR_VOL_RC_STATUS_CHANGED && ISSET(evd->new_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC) && !ISSET(evd->prev_value, MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) printf("%s: started resync on a volume %d\n", DEVNAME(sc), dev->slot - sc->sc_vd_id_low); } break; case MPII_EVENT_IR_PHYSICAL_DISK: break; case MPII_EVENT_IR_CONFIGURATION_CHANGE_LIST: mpii_event_raid(sc, enp); break; case MPII_EVENT_IR_OPERATION_STATUS: { struct mpii_evt_ir_status *evs = (struct mpii_evt_ir_status *)(enp + 1); struct mpii_device *dev; KERNEL_LOCK(); dev = mpii_find_dev(sc, lemtoh16(&evs->vol_dev_handle)); KERNEL_UNLOCK(); if (dev != NULL && evs->operation == MPII_EVENT_IR_RAIDOP_RESYNC) dev->percent = evs->percent; break; } default: DNPRINTF(MPII_D_EVT, "%s: unhandled event 0x%02x\n", DEVNAME(sc), lemtoh16(&enp->event)); } mpii_event_done(sc, rcb); } void mpii_event_done(struct mpii_softc *sc, struct mpii_rcb *rcb) { struct mpii_msg_event_reply *enp = rcb->rcb_reply; if (enp->ack_required) { mtx_enter(&sc->sc_evt_ack_mtx); SIMPLEQ_INSERT_TAIL(&sc->sc_evt_ack_queue, rcb, rcb_link); mtx_leave(&sc->sc_evt_ack_mtx); scsi_ioh_add(&sc->sc_evt_ack_handler); } else mpii_push_reply(sc, rcb); } void mpii_sas_remove_device(struct mpii_softc *sc, u_int16_t handle) { struct mpii_msg_scsi_task_request *stq; struct mpii_msg_sas_oper_request *soq; struct mpii_ccb *ccb; ccb = scsi_io_get(&sc->sc_iopool, 0); if (ccb == NULL) return; stq = ccb->ccb_cmd; stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; stq->task_type = MPII_SCSI_TASK_TARGET_RESET; htolem16(&stq->dev_handle, handle); ccb->ccb_done = mpii_empty_done; mpii_wait(sc, ccb); if (ccb->ccb_rcb != NULL) mpii_push_reply(sc, ccb->ccb_rcb); /* reuse a ccb */ ccb->ccb_state = MPII_CCB_READY; ccb->ccb_rcb = NULL; soq = ccb->ccb_cmd; memset(soq, 0, sizeof(*soq)); soq->function = MPII_FUNCTION_SAS_IO_UNIT_CONTROL; soq->operation = MPII_SAS_OP_REMOVE_DEVICE; htolem16(&soq->dev_handle, handle); ccb->ccb_done = mpii_empty_done; mpii_wait(sc, ccb); if (ccb->ccb_rcb != NULL) mpii_push_reply(sc, ccb->ccb_rcb); scsi_io_put(&sc->sc_iopool, ccb); } int mpii_board_info(struct mpii_softc *sc) { struct mpii_msg_iocfacts_request ifq; struct mpii_msg_iocfacts_reply ifp; struct mpii_cfg_manufacturing_pg0 mpg; struct mpii_cfg_hdr hdr; memset(&ifq, 0, sizeof(ifq)); memset(&ifp, 0, sizeof(ifp)); ifq.function = MPII_FUNCTION_IOC_FACTS; if (mpii_handshake_send(sc, &ifq, dwordsof(ifq)) != 0) { DNPRINTF(MPII_D_MISC, "%s: failed to request ioc facts\n", DEVNAME(sc)); return (1); } if (mpii_handshake_recv(sc, &ifp, dwordsof(ifp)) != 0) { DNPRINTF(MPII_D_MISC, "%s: failed to receive ioc facts\n", DEVNAME(sc)); return (1); } hdr.page_version = 0; hdr.page_length = sizeof(mpg) / 4; hdr.page_number = 0; hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_MANUFACTURING; memset(&mpg, 0, sizeof(mpg)); if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &mpg, sizeof(mpg)) != 0) { printf("%s: unable to fetch manufacturing page 0\n", DEVNAME(sc)); return (EINVAL); } printf("%s: %s, firmware %u.%u.%u.%u%s, MPI %u.%u\n", DEVNAME(sc), mpg.board_name, ifp.fw_version_maj, ifp.fw_version_min, ifp.fw_version_unit, ifp.fw_version_dev, ISSET(sc->sc_flags, MPII_F_RAID) ? " IR" : "", ifp.msg_version_maj, ifp.msg_version_min); return (0); } int mpii_target_map(struct mpii_softc *sc) { struct mpii_cfg_hdr hdr; struct mpii_cfg_ioc_pg8 ipg; int flags, pad = 0; hdr.page_version = 0; hdr.page_length = sizeof(ipg) / 4; hdr.page_number = 8; hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_IOC; memset(&ipg, 0, sizeof(ipg)); if (mpii_req_cfg_page(sc, 0, MPII_PG_POLL, &hdr, 1, &ipg, sizeof(ipg)) != 0) { printf("%s: unable to fetch ioc page 8\n", DEVNAME(sc)); return (EINVAL); } if (lemtoh16(&ipg.flags) & MPII_IOC_PG8_FLAGS_RESERVED_TARGETID_0) pad = 1; flags = lemtoh16(&ipg.ir_volume_mapping_flags) & MPII_IOC_PG8_IRFLAGS_VOLUME_MAPPING_MODE_MASK; if (ISSET(sc->sc_flags, MPII_F_RAID)) { if (flags == MPII_IOC_PG8_IRFLAGS_LOW_VOLUME_MAPPING) { sc->sc_vd_id_low += pad; pad = sc->sc_max_volumes; /* for sc_pd_id_start */ } else sc->sc_vd_id_low = sc->sc_max_devices - sc->sc_max_volumes; } sc->sc_pd_id_start += pad; return (0); } int mpii_req_cfg_header(struct mpii_softc *sc, u_int8_t type, u_int8_t number, u_int32_t address, int flags, void *p) { struct mpii_msg_config_request *cq; struct mpii_msg_config_reply *cp; struct mpii_ccb *ccb; struct mpii_cfg_hdr *hdr = p; struct mpii_ecfg_hdr *ehdr = p; int etype = 0; int rv = 0; DNPRINTF(MPII_D_MISC, "%s: mpii_req_cfg_header type: %#x number: %x " "address: 0x%08x flags: 0x%b\n", DEVNAME(sc), type, number, address, flags, MPII_PG_FMT); ccb = scsi_io_get(&sc->sc_iopool, ISSET(flags, MPII_PG_POLL) ? SCSI_NOSLEEP : 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header ccb_get\n", DEVNAME(sc)); return (1); } if (ISSET(flags, MPII_PG_EXTENDED)) { etype = type; type = MPII_CONFIG_REQ_PAGE_TYPE_EXTENDED; } cq = ccb->ccb_cmd; cq->function = MPII_FUNCTION_CONFIG; cq->action = MPII_CONFIG_REQ_ACTION_PAGE_HEADER; cq->config_header.page_number = number; cq->config_header.page_type = type; cq->ext_page_type = etype; htolem32(&cq->page_address, address); htolem32(&cq->page_buffer.sg_hdr, MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL); ccb->ccb_done = mpii_empty_done; if (ISSET(flags, MPII_PG_POLL)) { if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", DEVNAME(sc)); return (1); } } else mpii_wait(sc, ccb); if (ccb->ccb_rcb == NULL) { scsi_io_put(&sc->sc_iopool, ccb); return (1); } cp = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x sgl_flags: 0x%02x " "msg_length: %d function: 0x%02x\n", DEVNAME(sc), cp->action, cp->sgl_flags, cp->msg_length, cp->function); DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " "msg_flags: 0x%02x\n", DEVNAME(sc), lemtoh16(&cp->ext_page_length), cp->ext_page_type, cp->msg_flags); DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), cp->vp_id, cp->vf_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), lemtoh16(&cp->ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), lemtoh32(&cp->ioc_loginfo)); DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), cp->config_header.page_version, cp->config_header.page_length, cp->config_header.page_number, cp->config_header.page_type); if (lemtoh16(&cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) rv = 1; else if (ISSET(flags, MPII_PG_EXTENDED)) { memset(ehdr, 0, sizeof(*ehdr)); ehdr->page_version = cp->config_header.page_version; ehdr->page_number = cp->config_header.page_number; ehdr->page_type = cp->config_header.page_type; ehdr->ext_page_length = cp->ext_page_length; ehdr->ext_page_type = cp->ext_page_type; } else *hdr = cp->config_header; mpii_push_reply(sc, ccb->ccb_rcb); scsi_io_put(&sc->sc_iopool, ccb); return (rv); } int mpii_req_cfg_page(struct mpii_softc *sc, u_int32_t address, int flags, void *p, int read, void *page, size_t len) { struct mpii_msg_config_request *cq; struct mpii_msg_config_reply *cp; struct mpii_ccb *ccb; struct mpii_cfg_hdr *hdr = p; struct mpii_ecfg_hdr *ehdr = p; caddr_t kva; int page_length; int rv = 0; DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page address: %d read: %d " "type: %x\n", DEVNAME(sc), address, read, hdr->page_type); page_length = ISSET(flags, MPII_PG_EXTENDED) ? lemtoh16(&ehdr->ext_page_length) : hdr->page_length; if (len > sc->sc_request_size - sizeof(*cq) || len < page_length * 4) return (1); ccb = scsi_io_get(&sc->sc_iopool, ISSET(flags, MPII_PG_POLL) ? SCSI_NOSLEEP : 0); if (ccb == NULL) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_page ccb_get\n", DEVNAME(sc)); return (1); } cq = ccb->ccb_cmd; cq->function = MPII_FUNCTION_CONFIG; cq->action = (read ? MPII_CONFIG_REQ_ACTION_PAGE_READ_CURRENT : MPII_CONFIG_REQ_ACTION_PAGE_WRITE_CURRENT); if (ISSET(flags, MPII_PG_EXTENDED)) { cq->config_header.page_version = ehdr->page_version; cq->config_header.page_number = ehdr->page_number; cq->config_header.page_type = ehdr->page_type; cq->ext_page_len = ehdr->ext_page_length; cq->ext_page_type = ehdr->ext_page_type; } else cq->config_header = *hdr; cq->config_header.page_type &= MPII_CONFIG_REQ_PAGE_TYPE_MASK; htolem32(&cq->page_address, address); htolem32(&cq->page_buffer.sg_hdr, MPII_SGE_FL_TYPE_SIMPLE | MPII_SGE_FL_LAST | MPII_SGE_FL_EOB | MPII_SGE_FL_EOL | MPII_SGE_FL_SIZE_64 | (page_length * 4) | (read ? MPII_SGE_FL_DIR_IN : MPII_SGE_FL_DIR_OUT)); /* bounce the page via the request space to avoid more bus_dma games */ mpii_dvatosge(&cq->page_buffer, ccb->ccb_cmd_dva + sizeof(struct mpii_msg_config_request)); kva = ccb->ccb_cmd; kva += sizeof(struct mpii_msg_config_request); if (!read) memcpy(kva, page, len); ccb->ccb_done = mpii_empty_done; if (ISSET(flags, MPII_PG_POLL)) { if (mpii_poll(sc, ccb) != 0) { DNPRINTF(MPII_D_MISC, "%s: mpii_cfg_header poll\n", DEVNAME(sc)); return (1); } } else mpii_wait(sc, ccb); if (ccb->ccb_rcb == NULL) { scsi_io_put(&sc->sc_iopool, ccb); return (1); } cp = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_MISC, "%s: action: 0x%02x msg_length: %d " "function: 0x%02x\n", DEVNAME(sc), cp->action, cp->msg_length, cp->function); DNPRINTF(MPII_D_MISC, "%s: ext_page_length: %d ext_page_type: 0x%02x " "msg_flags: 0x%02x\n", DEVNAME(sc), lemtoh16(&cp->ext_page_length), cp->ext_page_type, cp->msg_flags); DNPRINTF(MPII_D_MISC, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), cp->vp_id, cp->vf_id); DNPRINTF(MPII_D_MISC, "%s: ioc_status: 0x%04x\n", DEVNAME(sc), lemtoh16(&cp->ioc_status)); DNPRINTF(MPII_D_MISC, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), lemtoh32(&cp->ioc_loginfo)); DNPRINTF(MPII_D_MISC, "%s: page_version: 0x%02x page_length: %d " "page_number: 0x%02x page_type: 0x%02x\n", DEVNAME(sc), cp->config_header.page_version, cp->config_header.page_length, cp->config_header.page_number, cp->config_header.page_type); if (lemtoh16(&cp->ioc_status) != MPII_IOCSTATUS_SUCCESS) rv = 1; else if (read) memcpy(page, kva, len); mpii_push_reply(sc, ccb->ccb_rcb); scsi_io_put(&sc->sc_iopool, ccb); return (rv); } struct mpii_rcb * mpii_reply(struct mpii_softc *sc, struct mpii_reply_descr *rdp) { struct mpii_rcb *rcb = NULL; u_int32_t rfid; DNPRINTF(MPII_D_INTR, "%s: mpii_reply\n", DEVNAME(sc)); if ((rdp->reply_flags & MPII_REPLY_DESCR_TYPE_MASK) == MPII_REPLY_DESCR_ADDRESS_REPLY) { rfid = (lemtoh32(&rdp->frame_addr) - (u_int32_t)MPII_DMA_DVA(sc->sc_replies)) / sc->sc_reply_size; bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), sc->sc_reply_size * rfid, sc->sc_reply_size, BUS_DMASYNC_POSTREAD); rcb = &sc->sc_rcbs[rfid]; } memset(rdp, 0xff, sizeof(*rdp)); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_reply_postq), 8 * sc->sc_reply_post_host_index, 8, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); return (rcb); } struct mpii_dmamem * mpii_dmamem_alloc(struct mpii_softc *sc, size_t size) { struct mpii_dmamem *mdm; int nsegs; mdm = malloc(sizeof(*mdm), M_DEVBUF, M_NOWAIT | M_ZERO); if (mdm == NULL) return (NULL); mdm->mdm_size = size; if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mdm->mdm_map) != 0) goto mdmfree; if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mdm->mdm_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) goto destroy; if (bus_dmamem_map(sc->sc_dmat, &mdm->mdm_seg, nsegs, size, &mdm->mdm_kva, BUS_DMA_NOWAIT) != 0) goto free; if (bus_dmamap_load(sc->sc_dmat, mdm->mdm_map, mdm->mdm_kva, size, NULL, BUS_DMA_NOWAIT) != 0) goto unmap; return (mdm); unmap: bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, size); free: bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); destroy: bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); mdmfree: free(mdm, M_DEVBUF, sizeof *mdm); return (NULL); } void mpii_dmamem_free(struct mpii_softc *sc, struct mpii_dmamem *mdm) { DNPRINTF(MPII_D_MEM, "%s: mpii_dmamem_free %p\n", DEVNAME(sc), mdm); bus_dmamap_unload(sc->sc_dmat, mdm->mdm_map); bus_dmamem_unmap(sc->sc_dmat, mdm->mdm_kva, mdm->mdm_size); bus_dmamem_free(sc->sc_dmat, &mdm->mdm_seg, 1); bus_dmamap_destroy(sc->sc_dmat, mdm->mdm_map); free(mdm, M_DEVBUF, sizeof *mdm); } int mpii_insert_dev(struct mpii_softc *sc, struct mpii_device *dev) { int slot; /* initial hint */ if (dev == NULL || dev->slot < 0) return (1); slot = dev->slot; while (slot < sc->sc_max_devices && sc->sc_devs[slot] != NULL) slot++; if (slot >= sc->sc_max_devices) return (1); dev->slot = slot; sc->sc_devs[slot] = dev; return (0); } int mpii_remove_dev(struct mpii_softc *sc, struct mpii_device *dev) { int i; if (dev == NULL) return (1); for (i = 0; i < sc->sc_max_devices; i++) { if (sc->sc_devs[i] == NULL) continue; if (sc->sc_devs[i]->dev_handle == dev->dev_handle) { sc->sc_devs[i] = NULL; return (0); } } return (1); } struct mpii_device * mpii_find_dev(struct mpii_softc *sc, u_int16_t handle) { int i; for (i = 0; i < sc->sc_max_devices; i++) { if (sc->sc_devs[i] == NULL) continue; if (sc->sc_devs[i]->dev_handle == handle) return (sc->sc_devs[i]); } return (NULL); } int mpii_alloc_ccbs(struct mpii_softc *sc) { struct mpii_ccb *ccb; u_int8_t *cmd; int i; SIMPLEQ_INIT(&sc->sc_ccb_free); SIMPLEQ_INIT(&sc->sc_ccb_tmos); mtx_init(&sc->sc_ccb_free_mtx, IPL_BIO); mtx_init(&sc->sc_ccb_mtx, IPL_BIO); scsi_ioh_set(&sc->sc_ccb_tmo_handler, &sc->sc_iopool, mpii_scsi_cmd_tmo_handler, sc); sc->sc_ccbs = mallocarray((sc->sc_max_cmds-1), sizeof(*ccb), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_ccbs == NULL) { printf("%s: unable to allocate ccbs\n", DEVNAME(sc)); return (1); } sc->sc_requests = mpii_dmamem_alloc(sc, sc->sc_request_size * sc->sc_max_cmds); if (sc->sc_requests == NULL) { printf("%s: unable to allocate ccb dmamem\n", DEVNAME(sc)); goto free_ccbs; } cmd = MPII_DMA_KVA(sc->sc_requests); /* * we have sc->sc_max_cmds system request message * frames, but smid zero cannot be used. so we then * have (sc->sc_max_cmds - 1) number of ccbs */ for (i = 1; i < sc->sc_max_cmds; i++) { ccb = &sc->sc_ccbs[i - 1]; if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW | BUS_DMA_64BIT, &ccb->ccb_dmamap) != 0) { printf("%s: unable to create dma map\n", DEVNAME(sc)); goto free_maps; } ccb->ccb_sc = sc; htolem16(&ccb->ccb_smid, i); ccb->ccb_offset = sc->sc_request_size * i; ccb->ccb_cmd = &cmd[ccb->ccb_offset]; ccb->ccb_cmd_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_requests) + ccb->ccb_offset; DNPRINTF(MPII_D_CCB, "%s: mpii_alloc_ccbs(%d) ccb: %p map: %p " "sc: %p smid: %#x offs: %#lx cmd: %p dva: %#lx\n", DEVNAME(sc), i, ccb, ccb->ccb_dmamap, ccb->ccb_sc, ccb->ccb_smid, ccb->ccb_offset, ccb->ccb_cmd, ccb->ccb_cmd_dva); mpii_put_ccb(sc, ccb); } scsi_iopool_init(&sc->sc_iopool, sc, mpii_get_ccb, mpii_put_ccb); return (0); free_maps: while ((ccb = mpii_get_ccb(sc)) != NULL) bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); mpii_dmamem_free(sc, sc->sc_requests); free_ccbs: free(sc->sc_ccbs, M_DEVBUF, (sc->sc_max_cmds-1) * sizeof(*ccb)); return (1); } void mpii_put_ccb(void *cookie, void *io) { struct mpii_softc *sc = cookie; struct mpii_ccb *ccb = io; DNPRINTF(MPII_D_CCB, "%s: mpii_put_ccb %p\n", DEVNAME(sc), ccb); ccb->ccb_state = MPII_CCB_FREE; ccb->ccb_cookie = NULL; ccb->ccb_done = NULL; ccb->ccb_rcb = NULL; memset(ccb->ccb_cmd, 0, sc->sc_request_size); KERNEL_UNLOCK(); mtx_enter(&sc->sc_ccb_free_mtx); SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_link); mtx_leave(&sc->sc_ccb_free_mtx); KERNEL_LOCK(); } void * mpii_get_ccb(void *cookie) { struct mpii_softc *sc = cookie; struct mpii_ccb *ccb; KERNEL_UNLOCK(); mtx_enter(&sc->sc_ccb_free_mtx); ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free); if (ccb != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb_link); ccb->ccb_state = MPII_CCB_READY; } mtx_leave(&sc->sc_ccb_free_mtx); KERNEL_LOCK(); DNPRINTF(MPII_D_CCB, "%s: mpii_get_ccb %p\n", DEVNAME(sc), ccb); return (ccb); } int mpii_alloc_replies(struct mpii_softc *sc) { DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_replies\n", DEVNAME(sc)); sc->sc_rcbs = mallocarray(sc->sc_num_reply_frames, sizeof(struct mpii_rcb), M_DEVBUF, M_NOWAIT); if (sc->sc_rcbs == NULL) return (1); sc->sc_replies = mpii_dmamem_alloc(sc, sc->sc_reply_size * sc->sc_num_reply_frames); if (sc->sc_replies == NULL) { free(sc->sc_rcbs, M_DEVBUF, sc->sc_num_reply_frames * sizeof(struct mpii_rcb)); return (1); } return (0); } void mpii_push_replies(struct mpii_softc *sc) { struct mpii_rcb *rcb; caddr_t kva = MPII_DMA_KVA(sc->sc_replies); int i; bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_replies), 0, sc->sc_reply_size * sc->sc_num_reply_frames, BUS_DMASYNC_PREREAD); for (i = 0; i < sc->sc_num_reply_frames; i++) { rcb = &sc->sc_rcbs[i]; rcb->rcb_reply = kva + sc->sc_reply_size * i; rcb->rcb_reply_dva = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + sc->sc_reply_size * i; mpii_push_reply(sc, rcb); } } void mpii_start(struct mpii_softc *sc, struct mpii_ccb *ccb) { struct mpii_request_header *rhp; struct mpii_request_descr descr; u_long *rdp = (u_long *)&descr; DNPRINTF(MPII_D_RW, "%s: mpii_start %#lx\n", DEVNAME(sc), ccb->ccb_cmd_dva); bus_dmamap_sync(sc->sc_dmat, MPII_DMA_MAP(sc->sc_requests), ccb->ccb_offset, sc->sc_request_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ccb->ccb_state = MPII_CCB_QUEUED; rhp = ccb->ccb_cmd; memset(&descr, 0, sizeof(descr)); switch (rhp->function) { case MPII_FUNCTION_SCSI_IO_REQUEST: descr.request_flags = MPII_REQ_DESCR_SCSI_IO; descr.dev_handle = htole16(ccb->ccb_dev_handle); break; case MPII_FUNCTION_SCSI_TASK_MGMT: descr.request_flags = MPII_REQ_DESCR_HIGH_PRIORITY; break; default: descr.request_flags = MPII_REQ_DESCR_DEFAULT; } descr.vf_id = sc->sc_vf_id; descr.smid = ccb->ccb_smid; DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_LOW (0x%08x) write " "0x%08lx\n", DEVNAME(sc), MPII_REQ_DESCR_POST_LOW, *rdp); DNPRINTF(MPII_D_RW, "%s: MPII_REQ_DESCR_POST_HIGH (0x%08x) write " "0x%08lx\n", DEVNAME(sc), MPII_REQ_DESCR_POST_HIGH, *(rdp+1)); #if defined(__LP64__) bus_space_write_raw_8(sc->sc_iot, sc->sc_ioh, MPII_REQ_DESCR_POST_LOW, *rdp); #else mtx_enter(&sc->sc_req_mtx); bus_space_write_raw_4(sc->sc_iot, sc->sc_ioh, MPII_REQ_DESCR_POST_LOW, rdp[0]); bus_space_barrier(sc->sc_iot, sc->sc_ioh, MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE); bus_space_write_raw_4(sc->sc_iot, sc->sc_ioh, MPII_REQ_DESCR_POST_HIGH, rdp[1]); bus_space_barrier(sc->sc_iot, sc->sc_ioh, MPII_REQ_DESCR_POST_LOW, 8, BUS_SPACE_BARRIER_WRITE); mtx_leave(&sc->sc_req_mtx); #endif } int mpii_poll(struct mpii_softc *sc, struct mpii_ccb *ccb) { void (*done)(struct mpii_ccb *); void *cookie; int rv = 1; DNPRINTF(MPII_D_INTR, "%s: mpii_poll\n", DEVNAME(sc)); done = ccb->ccb_done; cookie = ccb->ccb_cookie; ccb->ccb_done = mpii_poll_done; ccb->ccb_cookie = &rv; mpii_start(sc, ccb); while (rv == 1) { /* avoid excessive polling */ if (mpii_reply_waiting(sc)) mpii_intr(sc); else delay(10); } ccb->ccb_cookie = cookie; done(ccb); return (0); } void mpii_poll_done(struct mpii_ccb *ccb) { int *rv = ccb->ccb_cookie; *rv = 0; } int mpii_alloc_queues(struct mpii_softc *sc) { u_int32_t *rfp; int i; DNPRINTF(MPII_D_MISC, "%s: mpii_alloc_queues\n", DEVNAME(sc)); sc->sc_reply_freeq = mpii_dmamem_alloc(sc, sc->sc_reply_free_qdepth * sizeof(*rfp)); if (sc->sc_reply_freeq == NULL) return (1); rfp = MPII_DMA_KVA(sc->sc_reply_freeq); for (i = 0; i < sc->sc_num_reply_frames; i++) { rfp[i] = (u_int32_t)MPII_DMA_DVA(sc->sc_replies) + sc->sc_reply_size * i; } sc->sc_reply_postq = mpii_dmamem_alloc(sc, sc->sc_reply_post_qdepth * sizeof(struct mpii_reply_descr)); if (sc->sc_reply_postq == NULL) goto free_reply_freeq; sc->sc_reply_postq_kva = MPII_DMA_KVA(sc->sc_reply_postq); memset(sc->sc_reply_postq_kva, 0xff, sc->sc_reply_post_qdepth * sizeof(struct mpii_reply_descr)); return (0); free_reply_freeq: mpii_dmamem_free(sc, sc->sc_reply_freeq); return (1); } void mpii_init_queues(struct mpii_softc *sc) { DNPRINTF(MPII_D_MISC, "%s: mpii_init_queues\n", DEVNAME(sc)); sc->sc_reply_free_host_index = sc->sc_reply_free_qdepth - 1; sc->sc_reply_post_host_index = 0; mpii_write_reply_free(sc, sc->sc_reply_free_host_index); mpii_write_reply_post(sc, sc->sc_reply_post_host_index); } void mpii_wait(struct mpii_softc *sc, struct mpii_ccb *ccb) { struct mutex mtx; void (*done)(struct mpii_ccb *); void *cookie; mtx_init(&mtx, IPL_BIO); done = ccb->ccb_done; cookie = ccb->ccb_cookie; ccb->ccb_done = mpii_wait_done; ccb->ccb_cookie = &mtx; /* XXX this will wait forever for the ccb to complete */ mpii_start(sc, ccb); mtx_enter(&mtx); while (ccb->ccb_cookie != NULL) msleep_nsec(ccb, &mtx, PRIBIO, "mpiiwait", INFSLP); mtx_leave(&mtx); ccb->ccb_cookie = cookie; done(ccb); } void mpii_wait_done(struct mpii_ccb *ccb) { struct mutex *mtx = ccb->ccb_cookie; mtx_enter(mtx); ccb->ccb_cookie = NULL; mtx_leave(mtx); wakeup_one(ccb); } void mpii_scsi_cmd(struct scsi_xfer *xs) { struct scsi_link *link = xs->sc_link; struct mpii_softc *sc = link->bus->sb_adapter_softc; struct mpii_ccb *ccb = xs->io; struct mpii_msg_scsi_io *io; struct mpii_device *dev; int ret; DNPRINTF(MPII_D_CMD, "%s: mpii_scsi_cmd\n", DEVNAME(sc)); if (xs->cmdlen > MPII_CDB_LEN) { DNPRINTF(MPII_D_CMD, "%s: CDB too big %d\n", DEVNAME(sc), xs->cmdlen); memset(&xs->sense, 0, sizeof(xs->sense)); xs->sense.error_code = SSD_ERRCODE_VALID | 0x70; xs->sense.flags = SKEY_ILLEGAL_REQUEST; xs->sense.add_sense_code = 0x20; xs->error = XS_SENSE; scsi_done(xs); return; } if ((dev = sc->sc_devs[link->target]) == NULL) { /* device no longer exists */ xs->error = XS_SELTIMEOUT; scsi_done(xs); return; } KERNEL_UNLOCK(); DNPRINTF(MPII_D_CMD, "%s: ccb_smid: %d xs->flags: 0x%x\n", DEVNAME(sc), ccb->ccb_smid, xs->flags); ccb->ccb_cookie = xs; ccb->ccb_done = mpii_scsi_cmd_done; ccb->ccb_dev_handle = dev->dev_handle; io = ccb->ccb_cmd; memset(io, 0, sizeof(*io)); io->function = MPII_FUNCTION_SCSI_IO_REQUEST; io->sense_buffer_length = sizeof(xs->sense); io->sgl_offset0 = sizeof(struct mpii_msg_scsi_io) / 4; htolem16(&io->io_flags, xs->cmdlen); htolem16(&io->dev_handle, ccb->ccb_dev_handle); htobem16(&io->lun[0], link->lun); switch (xs->flags & (SCSI_DATA_IN | SCSI_DATA_OUT)) { case SCSI_DATA_IN: io->direction = MPII_SCSIIO_DIR_READ; break; case SCSI_DATA_OUT: io->direction = MPII_SCSIIO_DIR_WRITE; break; default: io->direction = MPII_SCSIIO_DIR_NONE; break; } io->tagging = MPII_SCSIIO_ATTR_SIMPLE_Q; memcpy(io->cdb, &xs->cmd, xs->cmdlen); htolem32(&io->data_length, xs->datalen); /* sense data is at the end of a request */ htolem32(&io->sense_buffer_low_address, ccb->ccb_cmd_dva + sc->sc_request_size - sizeof(struct scsi_sense_data)); if (ISSET(sc->sc_flags, MPII_F_SAS3)) ret = mpii_load_xs_sas3(ccb); else ret = mpii_load_xs(ccb); if (ret != 0) { xs->error = XS_DRIVER_STUFFUP; goto done; } timeout_set(&xs->stimeout, mpii_scsi_cmd_tmo, ccb); if (xs->flags & SCSI_POLL) { if (mpii_poll(sc, ccb) != 0) { xs->error = XS_DRIVER_STUFFUP; goto done; } } else { timeout_add_msec(&xs->stimeout, xs->timeout); mpii_start(sc, ccb); } KERNEL_LOCK(); return; done: KERNEL_LOCK(); scsi_done(xs); } void mpii_scsi_cmd_tmo(void *xccb) { struct mpii_ccb *ccb = xccb; struct mpii_softc *sc = ccb->ccb_sc; printf("%s: mpii_scsi_cmd_tmo (0x%08x)\n", DEVNAME(sc), mpii_read_db(sc)); mtx_enter(&sc->sc_ccb_mtx); if (ccb->ccb_state == MPII_CCB_QUEUED) { ccb->ccb_state = MPII_CCB_TIMEOUT; SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_tmos, ccb, ccb_link); } mtx_leave(&sc->sc_ccb_mtx); scsi_ioh_add(&sc->sc_ccb_tmo_handler); } void mpii_scsi_cmd_tmo_handler(void *cookie, void *io) { struct mpii_softc *sc = cookie; struct mpii_ccb *tccb = io; struct mpii_ccb *ccb; struct mpii_msg_scsi_task_request *stq; mtx_enter(&sc->sc_ccb_mtx); ccb = SIMPLEQ_FIRST(&sc->sc_ccb_tmos); if (ccb != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_tmos, ccb_link); ccb->ccb_state = MPII_CCB_QUEUED; } /* should remove any other ccbs for the same dev handle */ mtx_leave(&sc->sc_ccb_mtx); if (ccb == NULL) { scsi_io_put(&sc->sc_iopool, tccb); return; } stq = tccb->ccb_cmd; stq->function = MPII_FUNCTION_SCSI_TASK_MGMT; stq->task_type = MPII_SCSI_TASK_TARGET_RESET; htolem16(&stq->dev_handle, ccb->ccb_dev_handle); tccb->ccb_done = mpii_scsi_cmd_tmo_done; mpii_start(sc, tccb); } void mpii_scsi_cmd_tmo_done(struct mpii_ccb *tccb) { mpii_scsi_cmd_tmo_handler(tccb->ccb_sc, tccb); } void mpii_scsi_cmd_done(struct mpii_ccb *ccb) { struct mpii_ccb *tccb; struct mpii_msg_scsi_io_error *sie; struct mpii_softc *sc = ccb->ccb_sc; struct scsi_xfer *xs = ccb->ccb_cookie; struct scsi_sense_data *sense; bus_dmamap_t dmap = ccb->ccb_dmamap; timeout_del(&xs->stimeout); mtx_enter(&sc->sc_ccb_mtx); if (ccb->ccb_state == MPII_CCB_TIMEOUT) { /* ENOSIMPLEQ_REMOVE :( */ if (ccb == SIMPLEQ_FIRST(&sc->sc_ccb_tmos)) SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_tmos, ccb_link); else { SIMPLEQ_FOREACH(tccb, &sc->sc_ccb_tmos, ccb_link) { if (SIMPLEQ_NEXT(tccb, ccb_link) == ccb) { SIMPLEQ_REMOVE_AFTER(&sc->sc_ccb_tmos, tccb, ccb_link); break; } } } } ccb->ccb_state = MPII_CCB_READY; mtx_leave(&sc->sc_ccb_mtx); if (xs->datalen != 0) { bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, dmap); } xs->error = XS_NOERROR; xs->resid = 0; if (ccb->ccb_rcb == NULL) { /* no scsi error, we're ok so drop out early */ xs->status = SCSI_OK; goto done; } sie = ccb->ccb_rcb->rcb_reply; DNPRINTF(MPII_D_CMD, "%s: mpii_scsi_cmd_done xs cmd: 0x%02x len: %d " "flags 0x%x\n", DEVNAME(sc), xs->cmd.opcode, xs->datalen, xs->flags); DNPRINTF(MPII_D_CMD, "%s: dev_handle: %d msg_length: %d " "function: 0x%02x\n", DEVNAME(sc), lemtoh16(&sie->dev_handle), sie->msg_length, sie->function); DNPRINTF(MPII_D_CMD, "%s: vp_id: 0x%02x vf_id: 0x%02x\n", DEVNAME(sc), sie->vp_id, sie->vf_id); DNPRINTF(MPII_D_CMD, "%s: scsi_status: 0x%02x scsi_state: 0x%02x " "ioc_status: 0x%04x\n", DEVNAME(sc), sie->scsi_status, sie->scsi_state, lemtoh16(&sie->ioc_status)); DNPRINTF(MPII_D_CMD, "%s: ioc_loginfo: 0x%08x\n", DEVNAME(sc), lemtoh32(&sie->ioc_loginfo)); DNPRINTF(MPII_D_CMD, "%s: transfer_count: %d\n", DEVNAME(sc), lemtoh32(&sie->transfer_count)); DNPRINTF(MPII_D_CMD, "%s: sense_count: %d\n", DEVNAME(sc), lemtoh32(&sie->sense_count)); DNPRINTF(MPII_D_CMD, "%s: response_info: 0x%08x\n", DEVNAME(sc), lemtoh32(&sie->response_info)); DNPRINTF(MPII_D_CMD, "%s: task_tag: 0x%04x\n", DEVNAME(sc), lemtoh16(&sie->task_tag)); DNPRINTF(MPII_D_CMD, "%s: bidirectional_transfer_count: 0x%08x\n", DEVNAME(sc), lemtoh32(&sie->bidirectional_transfer_count)); if (sie->scsi_state & MPII_SCSIIO_STATE_NO_SCSI_STATUS) xs->status = SCSI_TERMINATED; else xs->status = sie->scsi_status; xs->resid = 0; switch (lemtoh16(&sie->ioc_status) & MPII_IOCSTATUS_MASK) { case MPII_IOCSTATUS_SCSI_DATA_UNDERRUN: xs->resid = xs->datalen - lemtoh32(&sie->transfer_count); /* FALLTHROUGH */ case MPII_IOCSTATUS_SUCCESS: case MPII_IOCSTATUS_SCSI_RECOVERED_ERROR: switch (xs->status) { case SCSI_OK: xs->error = XS_NOERROR; break; case SCSI_CHECK: xs->error = XS_SENSE; break; case SCSI_BUSY: case SCSI_QUEUE_FULL: xs->error = XS_BUSY; break; default: xs->error = XS_DRIVER_STUFFUP; } break; case MPII_IOCSTATUS_BUSY: case MPII_IOCSTATUS_INSUFFICIENT_RESOURCES: xs->error = XS_BUSY; break; case MPII_IOCSTATUS_SCSI_IOC_TERMINATED: case MPII_IOCSTATUS_SCSI_TASK_TERMINATED: xs->error = XS_RESET; break; case MPII_IOCSTATUS_SCSI_INVALID_DEVHANDLE: case MPII_IOCSTATUS_SCSI_DEVICE_NOT_THERE: xs->error = XS_SELTIMEOUT; break; default: xs->error = XS_DRIVER_STUFFUP; break; } sense = (struct scsi_sense_data *)((caddr_t)ccb->ccb_cmd + sc->sc_request_size - sizeof(*sense)); if (sie->scsi_state & MPII_SCSIIO_STATE_AUTOSENSE_VALID) memcpy(&xs->sense, sense, sizeof(xs->sense)); DNPRINTF(MPII_D_CMD, "%s: xs err: %d status: %#x\n", DEVNAME(sc), xs->error, xs->status); mpii_push_reply(sc, ccb->ccb_rcb); done: KERNEL_LOCK(); scsi_done(xs); KERNEL_UNLOCK(); } int mpii_scsi_ioctl(struct scsi_link *link, u_long cmd, caddr_t addr, int flag) { struct mpii_softc *sc = link->bus->sb_adapter_softc; struct mpii_device *dev = sc->sc_devs[link->target]; DNPRINTF(MPII_D_IOCTL, "%s: mpii_scsi_ioctl\n", DEVNAME(sc)); switch (cmd) { case DIOCGCACHE: case DIOCSCACHE: if (dev != NULL && ISSET(dev->flags, MPII_DF_VOLUME)) { return (mpii_ioctl_cache(link, cmd, (struct dk_cache *)addr)); } break; default: if (sc->sc_ioctl) return (sc->sc_ioctl(&sc->sc_dev, cmd, addr)); break; } return (ENOTTY); } int mpii_ioctl_cache(struct scsi_link *link, u_long cmd, struct dk_cache *dc) { struct mpii_softc *sc = link->bus->sb_adapter_softc; struct mpii_device *dev = sc->sc_devs[link->target]; struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_msg_raid_action_request *req; struct mpii_msg_raid_action_reply *rep; struct mpii_cfg_hdr hdr; struct mpii_ccb *ccb; u_int32_t addr = MPII_CFG_RAID_VOL_ADDR_HANDLE | dev->dev_handle; size_t pagelen; int rv = 0; int enabled; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, addr, MPII_PG_POLL, &hdr) != 0) return (EINVAL); pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) return (ENOMEM); if (mpii_req_cfg_page(sc, addr, MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) { rv = EINVAL; goto done; } enabled = ((lemtoh16(&vpg->volume_settings) & MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_MASK) == MPII_CFG_RAID_VOL_0_SETTINGS_CACHE_ENABLED) ? 1 : 0; if (cmd == DIOCGCACHE) { dc->wrcache = enabled; dc->rdcache = 0; goto done; } /* else DIOCSCACHE */ if (dc->rdcache) { rv = EOPNOTSUPP; goto done; } if (((dc->wrcache) ? 1 : 0) == enabled) goto done; ccb = scsi_io_get(&sc->sc_iopool, SCSI_POLL); if (ccb == NULL) { rv = ENOMEM; goto done; } ccb->ccb_done = mpii_empty_done; req = ccb->ccb_cmd; memset(req, 0, sizeof(*req)); req->function = MPII_FUNCTION_RAID_ACTION; req->action = MPII_RAID_ACTION_CHANGE_VOL_WRITE_CACHE; htolem16(&req->vol_dev_handle, dev->dev_handle); htolem32(&req->action_data, dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE : MPII_RAID_VOL_WRITE_CACHE_DISABLE); if (mpii_poll(sc, ccb) != 0) { rv = EIO; goto done; } if (ccb->ccb_rcb != NULL) { rep = ccb->ccb_rcb->rcb_reply; if ((rep->ioc_status != MPII_IOCSTATUS_SUCCESS) || ((rep->action_data[0] & MPII_RAID_VOL_WRITE_CACHE_MASK) != (dc->wrcache ? MPII_RAID_VOL_WRITE_CACHE_ENABLE : MPII_RAID_VOL_WRITE_CACHE_DISABLE))) rv = EINVAL; mpii_push_reply(sc, ccb->ccb_rcb); } scsi_io_put(&sc->sc_iopool, ccb); done: free(vpg, M_TEMP, pagelen); return (rv); } #if NBIO > 0 int mpii_ioctl(struct device *dev, u_long cmd, caddr_t addr) { struct mpii_softc *sc = (struct mpii_softc *)dev; int error = 0; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl ", DEVNAME(sc)); switch (cmd) { case BIOCINQ: DNPRINTF(MPII_D_IOCTL, "inq\n"); error = mpii_ioctl_inq(sc, (struct bioc_inq *)addr); break; case BIOCVOL: DNPRINTF(MPII_D_IOCTL, "vol\n"); error = mpii_ioctl_vol(sc, (struct bioc_vol *)addr); break; case BIOCDISK: DNPRINTF(MPII_D_IOCTL, "disk\n"); error = mpii_ioctl_disk(sc, (struct bioc_disk *)addr); break; default: DNPRINTF(MPII_D_IOCTL, " invalid ioctl\n"); error = ENOTTY; } return (error); } int mpii_ioctl_inq(struct mpii_softc *sc, struct bioc_inq *bi) { int i; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_inq\n", DEVNAME(sc)); strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev)); for (i = 0; i < sc->sc_max_devices; i++) if (sc->sc_devs[i] && ISSET(sc->sc_devs[i]->flags, MPII_DF_VOLUME)) bi->bi_novol++; return (0); } int mpii_ioctl_vol(struct mpii_softc *sc, struct bioc_vol *bv) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_cfg_hdr hdr; struct mpii_device *dev; struct scsi_link *lnk; struct device *scdev; size_t pagelen; u_int16_t volh; int rv, hcnt = 0; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_vol %d\n", DEVNAME(sc), bv->bv_volid); if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) return (ENODEV); volh = dev->dev_handle; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { printf("%s: unable to fetch header for raid volume page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) { printf("%s: unable to allocate space for raid " "volume page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr, 1, vpg, pagelen) != 0) { printf("%s: unable to fetch raid volume page 0\n", DEVNAME(sc)); free(vpg, M_TEMP, pagelen); return (EINVAL); } switch (vpg->volume_state) { case MPII_CFG_RAID_VOL_0_STATE_ONLINE: case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: bv->bv_status = BIOC_SVONLINE; break; case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: if (ISSET(lemtoh32(&vpg->volume_status), MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) { bv->bv_status = BIOC_SVREBUILD; bv->bv_percent = dev->percent; } else bv->bv_status = BIOC_SVDEGRADED; break; case MPII_CFG_RAID_VOL_0_STATE_FAILED: bv->bv_status = BIOC_SVOFFLINE; break; case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: bv->bv_status = BIOC_SVBUILDING; break; case MPII_CFG_RAID_VOL_0_STATE_MISSING: default: bv->bv_status = BIOC_SVINVALID; break; } switch (vpg->volume_type) { case MPII_CFG_RAID_VOL_0_TYPE_RAID0: bv->bv_level = 0; break; case MPII_CFG_RAID_VOL_0_TYPE_RAID1: bv->bv_level = 1; break; case MPII_CFG_RAID_VOL_0_TYPE_RAID1E: bv->bv_level = 0x1E; break; case MPII_CFG_RAID_VOL_0_TYPE_RAID10: bv->bv_level = 10; break; default: bv->bv_level = -1; } if ((rv = mpii_bio_hs(sc, NULL, 0, vpg->hot_spare_pool, &hcnt)) != 0) { free(vpg, M_TEMP, pagelen); return (rv); } bv->bv_nodisk = vpg->num_phys_disks + hcnt; bv->bv_size = letoh64(vpg->max_lba) * lemtoh16(&vpg->block_size); lnk = scsi_get_link(sc->sc_scsibus, dev->slot, 0); if (lnk != NULL) { scdev = lnk->device_softc; strlcpy(bv->bv_dev, scdev->dv_xname, sizeof(bv->bv_dev)); } free(vpg, M_TEMP, pagelen); return (0); } int mpii_ioctl_disk(struct mpii_softc *sc, struct bioc_disk *bd) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_cfg_raid_vol_pg0_physdisk *pd; struct mpii_cfg_hdr hdr; struct mpii_device *dev; size_t pagelen; u_int16_t volh; u_int8_t dn; DNPRINTF(MPII_D_IOCTL, "%s: mpii_ioctl_disk %d/%d\n", DEVNAME(sc), bd->bd_volid, bd->bd_diskid); if ((dev = mpii_find_vol(sc, bd->bd_volid)) == NULL) return (ENODEV); volh = dev->dev_handle; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr) != 0) { printf("%s: unable to fetch header for raid volume page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (vpg == NULL) { printf("%s: unable to allocate space for raid " "volume page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, 0, &hdr, 1, vpg, pagelen) != 0) { printf("%s: unable to fetch raid volume page 0\n", DEVNAME(sc)); free(vpg, M_TEMP, pagelen); return (EINVAL); } if (bd->bd_diskid >= vpg->num_phys_disks) { int nvdsk = vpg->num_phys_disks; int hsmap = vpg->hot_spare_pool; free(vpg, M_TEMP, pagelen); return (mpii_bio_hs(sc, bd, nvdsk, hsmap, NULL)); } pd = (struct mpii_cfg_raid_vol_pg0_physdisk *)(vpg + 1) + bd->bd_diskid; dn = pd->phys_disk_num; free(vpg, M_TEMP, pagelen); return (mpii_bio_disk(sc, bd, dn)); } int mpii_bio_hs(struct mpii_softc *sc, struct bioc_disk *bd, int nvdsk, int hsmap, int *hscnt) { struct mpii_cfg_raid_config_pg0 *cpg; struct mpii_raid_config_element *el; struct mpii_ecfg_hdr ehdr; size_t pagelen; int i, nhs = 0; if (bd) DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs %d\n", DEVNAME(sc), bd->bd_diskid - nvdsk); else DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_hs\n", DEVNAME(sc)); if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_CONFIG, 0, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED, &ehdr) != 0) { printf("%s: unable to fetch header for raid config page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = lemtoh16(&ehdr.ext_page_length) * 4; cpg = malloc(pagelen, M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (cpg == NULL) { printf("%s: unable to allocate space for raid config page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_CONFIG_ACTIVE_CONFIG, MPII_PG_EXTENDED, &ehdr, 1, cpg, pagelen) != 0) { printf("%s: unable to fetch raid config page 0\n", DEVNAME(sc)); free(cpg, M_TEMP, pagelen); return (EINVAL); } el = (struct mpii_raid_config_element *)(cpg + 1); for (i = 0; i < cpg->num_elements; i++, el++) { if (ISSET(lemtoh16(&el->element_flags), MPII_RAID_CONFIG_ELEMENT_FLAG_HSP_PHYS_DISK) && el->hot_spare_pool == hsmap) { /* * diskid comparison is based on the idea that all * disks are counted by the bio(4) in sequence, thus * subtracting the number of disks in the volume * from the diskid yields us a "relative" hotspare * number, which is good enough for us. */ if (bd != NULL && bd->bd_diskid == nhs + nvdsk) { u_int8_t dn = el->phys_disk_num; free(cpg, M_TEMP, pagelen); return (mpii_bio_disk(sc, bd, dn)); } nhs++; } } if (hscnt) *hscnt = nhs; free(cpg, M_TEMP, pagelen); return (0); } int mpii_bio_disk(struct mpii_softc *sc, struct bioc_disk *bd, u_int8_t dn) { struct mpii_cfg_raid_physdisk_pg0 *ppg; struct mpii_cfg_hdr hdr; struct mpii_device *dev; int len; DNPRINTF(MPII_D_IOCTL, "%s: mpii_bio_disk %d\n", DEVNAME(sc), bd->bd_diskid); ppg = malloc(sizeof(*ppg), M_TEMP, M_WAITOK | M_CANFAIL | M_ZERO); if (ppg == NULL) { printf("%s: unable to allocate space for raid physical disk " "page 0\n", DEVNAME(sc)); return (ENOMEM); } hdr.page_version = 0; hdr.page_length = sizeof(*ppg) / 4; hdr.page_number = 0; hdr.page_type = MPII_CONFIG_REQ_PAGE_TYPE_RAID_PD; if (mpii_req_cfg_page(sc, MPII_CFG_RAID_PHYS_DISK_ADDR_NUMBER | dn, 0, &hdr, 1, ppg, sizeof(*ppg)) != 0) { printf("%s: unable to fetch raid drive page 0\n", DEVNAME(sc)); free(ppg, M_TEMP, sizeof(*ppg)); return (EINVAL); } bd->bd_target = ppg->phys_disk_num; if ((dev = mpii_find_dev(sc, lemtoh16(&ppg->dev_handle))) == NULL) { bd->bd_status = BIOC_SDINVALID; free(ppg, M_TEMP, sizeof(*ppg)); return (0); } switch (ppg->phys_disk_state) { case MPII_CFG_RAID_PHYDISK_0_STATE_ONLINE: case MPII_CFG_RAID_PHYDISK_0_STATE_OPTIMAL: bd->bd_status = BIOC_SDONLINE; break; case MPII_CFG_RAID_PHYDISK_0_STATE_OFFLINE: if (ppg->offline_reason == MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILED || ppg->offline_reason == MPII_CFG_RAID_PHYDISK_0_OFFLINE_FAILEDREQ) bd->bd_status = BIOC_SDFAILED; else bd->bd_status = BIOC_SDOFFLINE; break; case MPII_CFG_RAID_PHYDISK_0_STATE_DEGRADED: bd->bd_status = BIOC_SDFAILED; break; case MPII_CFG_RAID_PHYDISK_0_STATE_REBUILDING: bd->bd_status = BIOC_SDREBUILD; break; case MPII_CFG_RAID_PHYDISK_0_STATE_HOTSPARE: bd->bd_status = BIOC_SDHOTSPARE; break; case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCONFIGURED: bd->bd_status = BIOC_SDUNUSED; break; case MPII_CFG_RAID_PHYDISK_0_STATE_NOTCOMPATIBLE: default: bd->bd_status = BIOC_SDINVALID; break; } bd->bd_size = letoh64(ppg->dev_max_lba) * lemtoh16(&ppg->block_size); scsi_strvis(bd->bd_vendor, ppg->vendor_id, sizeof(ppg->vendor_id)); len = strlen(bd->bd_vendor); bd->bd_vendor[len] = ' '; scsi_strvis(&bd->bd_vendor[len + 1], ppg->product_id, sizeof(ppg->product_id)); scsi_strvis(bd->bd_serial, ppg->serial, sizeof(ppg->serial)); free(ppg, M_TEMP, sizeof(*ppg)); return (0); } struct mpii_device * mpii_find_vol(struct mpii_softc *sc, int volid) { struct mpii_device *dev = NULL; if (sc->sc_vd_id_low + volid >= sc->sc_max_devices) return (NULL); dev = sc->sc_devs[sc->sc_vd_id_low + volid]; if (dev && ISSET(dev->flags, MPII_DF_VOLUME)) return (dev); return (NULL); } #ifndef SMALL_KERNEL /* * Non-sleeping lightweight version of the mpii_ioctl_vol */ int mpii_bio_volstate(struct mpii_softc *sc, struct bioc_vol *bv) { struct mpii_cfg_raid_vol_pg0 *vpg; struct mpii_cfg_hdr hdr; struct mpii_device *dev = NULL; size_t pagelen; u_int16_t volh; if ((dev = mpii_find_vol(sc, bv->bv_volid)) == NULL) return (ENODEV); volh = dev->dev_handle; if (mpii_req_cfg_header(sc, MPII_CONFIG_REQ_PAGE_TYPE_RAID_VOL, 0, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, MPII_PG_POLL, &hdr) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch header for raid " "volume page 0\n", DEVNAME(sc)); return (EINVAL); } pagelen = hdr.page_length * 4; vpg = malloc(pagelen, M_TEMP, M_NOWAIT | M_ZERO); if (vpg == NULL) { DNPRINTF(MPII_D_MISC, "%s: unable to allocate space for raid " "volume page 0\n", DEVNAME(sc)); return (ENOMEM); } if (mpii_req_cfg_page(sc, MPII_CFG_RAID_VOL_ADDR_HANDLE | volh, MPII_PG_POLL, &hdr, 1, vpg, pagelen) != 0) { DNPRINTF(MPII_D_MISC, "%s: unable to fetch raid volume " "page 0\n", DEVNAME(sc)); free(vpg, M_TEMP, pagelen); return (EINVAL); } switch (vpg->volume_state) { case MPII_CFG_RAID_VOL_0_STATE_ONLINE: case MPII_CFG_RAID_VOL_0_STATE_OPTIMAL: bv->bv_status = BIOC_SVONLINE; break; case MPII_CFG_RAID_VOL_0_STATE_DEGRADED: if (ISSET(lemtoh32(&vpg->volume_status), MPII_CFG_RAID_VOL_0_STATUS_RESYNC)) bv->bv_status = BIOC_SVREBUILD; else bv->bv_status = BIOC_SVDEGRADED; break; case MPII_CFG_RAID_VOL_0_STATE_FAILED: bv->bv_status = BIOC_SVOFFLINE; break; case MPII_CFG_RAID_VOL_0_STATE_INITIALIZING: bv->bv_status = BIOC_SVBUILDING; break; case MPII_CFG_RAID_VOL_0_STATE_MISSING: default: bv->bv_status = BIOC_SVINVALID; break; } free(vpg, M_TEMP, pagelen); return (0); } int mpii_create_sensors(struct mpii_softc *sc) { struct scsibus_softc *ssc = sc->sc_scsibus; struct device *dev; struct scsi_link *link; int i; sc->sc_sensors = mallocarray(sc->sc_vd_count, sizeof(struct ksensor), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc->sc_sensors == NULL) return (1); sc->sc_nsensors = sc->sc_vd_count; strlcpy(sc->sc_sensordev.xname, DEVNAME(sc), sizeof(sc->sc_sensordev.xname)); for (i = 0; i < sc->sc_vd_count; i++) { link = scsi_get_link(ssc, i + sc->sc_vd_id_low, 0); if (link == NULL) goto bad; dev = link->device_softc; sc->sc_sensors[i].type = SENSOR_DRIVE; sc->sc_sensors[i].status = SENSOR_S_UNKNOWN; strlcpy(sc->sc_sensors[i].desc, dev->dv_xname, sizeof(sc->sc_sensors[i].desc)); sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]); } if (sensor_task_register(sc, mpii_refresh_sensors, 10) == NULL) goto bad; sensordev_install(&sc->sc_sensordev); return (0); bad: free(sc->sc_sensors, M_DEVBUF, 0); return (1); } void mpii_refresh_sensors(void *arg) { struct mpii_softc *sc = arg; struct bioc_vol bv; int i; for (i = 0; i < sc->sc_nsensors; i++) { memset(&bv, 0, sizeof(bv)); bv.bv_volid = i; if (mpii_bio_volstate(sc, &bv)) return; switch(bv.bv_status) { case BIOC_SVOFFLINE: sc->sc_sensors[i].value = SENSOR_DRIVE_FAIL; sc->sc_sensors[i].status = SENSOR_S_CRIT; break; case BIOC_SVDEGRADED: sc->sc_sensors[i].value = SENSOR_DRIVE_PFAIL; sc->sc_sensors[i].status = SENSOR_S_WARN; break; case BIOC_SVREBUILD: sc->sc_sensors[i].value = SENSOR_DRIVE_REBUILD; sc->sc_sensors[i].status = SENSOR_S_WARN; break; case BIOC_SVONLINE: sc->sc_sensors[i].value = SENSOR_DRIVE_ONLINE; sc->sc_sensors[i].status = SENSOR_S_OK; break; case BIOC_SVINVALID: /* FALLTHROUGH */ default: sc->sc_sensors[i].value = 0; /* unknown */ sc->sc_sensors[i].status = SENSOR_S_UNKNOWN; } } } #endif /* SMALL_KERNEL */ #endif /* NBIO > 0 */