/* $OpenBSD: sdhc.c,v 1.76 2023/10/01 08:56:24 kettenis Exp $ */ /* * Copyright (c) 2006 Uwe Stuehler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * SD Host Controller driver based on the SD Host Controller Standard * Simplified Specification Version 1.00 (www.sdcard.org). */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* Timeouts in seconds */ #define SDHC_COMMAND_TIMEOUT 1 #define SDHC_BUFFER_TIMEOUT 1 #define SDHC_TRANSFER_TIMEOUT 1 #define SDHC_DMA_TIMEOUT 3 struct sdhc_host { struct sdhc_softc *sc; /* host controller device */ struct device *sdmmc; /* generic SD/MMC device */ bus_space_tag_t iot; /* host register set tag */ bus_space_handle_t ioh; /* host register set handle */ u_int16_t version; /* specification version */ u_int clkbase; /* base clock frequency in KHz */ int maxblklen; /* maximum block length */ int flags; /* flags for this host */ u_int32_t ocr; /* OCR value from capabilities */ u_int8_t regs[14]; /* host controller state */ u_int16_t intr_status; /* soft interrupt status */ u_int16_t intr_error_status; /* soft error status */ bus_dmamap_t adma_map; bus_dma_segment_t adma_segs[1]; caddr_t adma2; uint16_t block_size; uint16_t block_count; uint16_t transfer_mode; }; /* flag values */ #define SHF_USE_DMA 0x0001 #define SHF_USE_DMA64 0x0002 #define SHF_USE_32BIT_ACCESS 0x0004 #define HREAD1(hp, reg) \ (sdhc_read_1((hp), (reg))) #define HREAD2(hp, reg) \ (sdhc_read_2((hp), (reg))) #define HREAD4(hp, reg) \ (bus_space_read_4((hp)->iot, (hp)->ioh, (reg))) #define HWRITE1(hp, reg, val) \ sdhc_write_1((hp), (reg), (val)) #define HWRITE2(hp, reg, val) \ sdhc_write_2((hp), (reg), (val)) #define HWRITE4(hp, reg, val) \ bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val)) #define HCLR1(hp, reg, bits) \ HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits)) #define HCLR2(hp, reg, bits) \ HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits)) #define HSET1(hp, reg, bits) \ HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits)) #define HSET2(hp, reg, bits) \ HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits)) int sdhc_host_reset(sdmmc_chipset_handle_t); u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t); int sdhc_host_maxblklen(sdmmc_chipset_handle_t); int sdhc_card_detect(sdmmc_chipset_handle_t); int sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t); int sdhc_bus_clock(sdmmc_chipset_handle_t, int, int); int sdhc_bus_width(sdmmc_chipset_handle_t, int); void sdhc_card_intr_mask(sdmmc_chipset_handle_t, int); void sdhc_card_intr_ack(sdmmc_chipset_handle_t); int sdhc_signal_voltage(sdmmc_chipset_handle_t, int); void sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *); int sdhc_start_command(struct sdhc_host *, struct sdmmc_command *); int sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t); int sdhc_soft_reset(struct sdhc_host *, int); int sdhc_wait_intr_cold(struct sdhc_host *, int, int); int sdhc_wait_intr(struct sdhc_host *, int, int); void sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *); void sdhc_read_data(struct sdhc_host *, u_char *, int); void sdhc_write_data(struct sdhc_host *, u_char *, int); int sdhc_hibernate_init(sdmmc_chipset_handle_t, void *); #ifdef SDHC_DEBUG int sdhcdebug = 0; #define DPRINTF(n,s) do { if ((n) <= sdhcdebug) printf s; } while (0) void sdhc_dump_regs(struct sdhc_host *); #else #define DPRINTF(n,s) do {} while(0) #endif struct sdmmc_chip_functions sdhc_functions = { .host_reset = sdhc_host_reset, .host_ocr = sdhc_host_ocr, .host_maxblklen = sdhc_host_maxblklen, .card_detect = sdhc_card_detect, .bus_power = sdhc_bus_power, .bus_clock = sdhc_bus_clock, .bus_width = sdhc_bus_width, .exec_command = sdhc_exec_command, .card_intr_mask = sdhc_card_intr_mask, .card_intr_ack = sdhc_card_intr_ack, .signal_voltage = sdhc_signal_voltage, .hibernate_init = sdhc_hibernate_init, }; struct cfdriver sdhc_cd = { NULL, "sdhc", DV_DULL }; /* * Some controllers live on a bus that only allows 32-bit * transactions. In that case we use a RMW cycle for 8-bit and 16-bit * register writes. However that doesn't work for the Transfer Mode * register as this register lives in the same 32-bit word as the * Command register and writing the Command register triggers SD * command generation. We avoid this issue by using a shadow variable * for the Transfer Mode register that we write out when we write the * Command register. * * The Arasan controller integrated on the Broadcom SoCs * used in the Raspberry Pi has an interesting bug where writing the * same 32-bit register twice doesn't work. This means that we lose * writes to the Block Sine and/or Block Count register. We work * around that issue by using shadow variables as well. */ uint8_t sdhc_read_1(struct sdhc_host *hp, bus_size_t offset) { uint32_t reg; if (hp->flags & SHF_USE_32BIT_ACCESS) { reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3); return (reg >> ((offset & 3) * 8)) & 0xff; } return bus_space_read_1(hp->iot, hp->ioh, offset); } uint16_t sdhc_read_2(struct sdhc_host *hp, bus_size_t offset) { uint32_t reg; if (hp->flags & SHF_USE_32BIT_ACCESS) { reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2); return (reg >> ((offset & 2) * 8)) & 0xffff; } return bus_space_read_2(hp->iot, hp->ioh, offset); } void sdhc_write_1(struct sdhc_host *hp, bus_size_t offset, uint8_t value) { uint32_t reg; if (hp->flags & SHF_USE_32BIT_ACCESS) { reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3); reg &= ~(0xff << ((offset & 3) * 8)); reg |= (value << ((offset & 3) * 8)); bus_space_write_4(hp->iot, hp->ioh, offset & ~3, reg); return; } bus_space_write_1(hp->iot, hp->ioh, offset, value); } void sdhc_write_2(struct sdhc_host *hp, bus_size_t offset, uint16_t value) { uint32_t reg; if (hp->flags & SHF_USE_32BIT_ACCESS) { switch (offset) { case SDHC_BLOCK_SIZE: hp->block_size = value; return; case SDHC_BLOCK_COUNT: hp->block_count = value; return; case SDHC_TRANSFER_MODE: hp->transfer_mode = value; return; case SDHC_COMMAND: bus_space_write_4(hp->iot, hp->ioh, SDHC_BLOCK_SIZE, (hp->block_count << 16) | hp->block_size); bus_space_write_4(hp->iot, hp->ioh, SDHC_TRANSFER_MODE, (value << 16) | hp->transfer_mode); return; } reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2); reg &= ~(0xffff << ((offset & 2) * 8)); reg |= (value << ((offset & 2) * 8)); bus_space_write_4(hp->iot, hp->ioh, offset & ~2, reg); return; } bus_space_write_2(hp->iot, hp->ioh, offset, value); } /* * Called by attachment driver. For each SD card slot there is one SD * host controller standard register set. (1.3) */ int sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot, bus_space_handle_t ioh, bus_size_t iosize, int usedma, uint64_t capmask, uint64_t capset) { struct sdmmcbus_attach_args saa; struct sdhc_host *hp; uint32_t caps; int major, minor; int error = 1; int max_clock; /* Allocate one more host structure. */ sc->sc_nhosts++; hp = malloc(sizeof(*hp), M_DEVBUF, M_WAITOK | M_ZERO); sc->sc_host[sc->sc_nhosts - 1] = hp; if (ISSET(sc->sc_flags, SDHC_F_32BIT_ACCESS)) SET(hp->flags, SHF_USE_32BIT_ACCESS); /* Fill in the new host structure. */ hp->sc = sc; hp->iot = iot; hp->ioh = ioh; /* Store specification version. */ hp->version = HREAD2(hp, SDHC_HOST_CTL_VERSION); /* * Reset the host controller and enable interrupts. */ (void)sdhc_host_reset(hp); /* Determine host capabilities. */ caps = HREAD4(hp, SDHC_CAPABILITIES); caps &= ~capmask; caps |= capset; /* Use DMA if the host system and the controller support it. */ if (usedma && ISSET(caps, SDHC_ADMA2_SUPP)) { SET(hp->flags, SHF_USE_DMA); if (ISSET(caps, SDHC_64BIT_DMA_SUPP)) SET(hp->flags, SHF_USE_DMA64); } /* * Determine the base clock frequency. (2.2.24) */ if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) { /* SDHC 3.0 supports 10-255 MHz. */ max_clock = 255000; if (SDHC_BASE_FREQ_KHZ_V3(caps) != 0) hp->clkbase = SDHC_BASE_FREQ_KHZ_V3(caps); } else { /* SDHC 1.0/2.0 supports only 10-63 MHz. */ max_clock = 63000; if (SDHC_BASE_FREQ_KHZ(caps) != 0) hp->clkbase = SDHC_BASE_FREQ_KHZ(caps); } if (hp->clkbase == 0) { /* Make sure we can clock down to 400 kHz. */ max_clock = 400 * SDHC_SDCLK_DIV_MAX_V3; hp->clkbase = sc->sc_clkbase; } if (hp->clkbase == 0) { /* The attachment driver must tell us. */ printf("%s: base clock frequency unknown\n", sc->sc_dev.dv_xname); goto err; } else if (hp->clkbase < 10000 || hp->clkbase > max_clock) { printf("%s: base clock frequency out of range: %u MHz\n", sc->sc_dev.dv_xname, hp->clkbase / 1000); goto err; } switch (SDHC_SPEC_VERSION(hp->version)) { case SDHC_SPEC_VERS_4_10: major = 4, minor = 10; break; case SDHC_SPEC_VERS_4_20: major = 4, minor = 20; break; default: major = SDHC_SPEC_VERSION(hp->version) + 1, minor = 0; break; } printf("%s: SDHC %d.%02d, %d MHz base clock\n", DEVNAME(sc), major, minor, hp->clkbase / 1000); /* * XXX Set the data timeout counter value according to * capabilities. (2.2.15) */ /* * Determine SD bus voltage levels supported by the controller. */ if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V)) SET(hp->ocr, MMC_OCR_1_65V_1_95V); if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V)) SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V); if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V)) SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V); /* * Determine the maximum block length supported by the host * controller. (2.2.24) */ switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) { case SDHC_MAX_BLK_LEN_512: hp->maxblklen = 512; break; case SDHC_MAX_BLK_LEN_1024: hp->maxblklen = 1024; break; case SDHC_MAX_BLK_LEN_2048: hp->maxblklen = 2048; break; default: hp->maxblklen = 1; break; } if (ISSET(hp->flags, SHF_USE_DMA)) { int rseg; /* Allocate ADMA2 descriptor memory */ error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE, hp->adma_segs, 1, &rseg, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (error) goto adma_done; error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg, PAGE_SIZE, &hp->adma2, BUS_DMA_WAITOK | BUS_DMA_COHERENT); if (error) { bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg); goto adma_done; } error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 0, BUS_DMA_WAITOK, &hp->adma_map); if (error) { bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg); goto adma_done; } error = bus_dmamap_load(sc->sc_dmat, hp->adma_map, hp->adma2, PAGE_SIZE, NULL, BUS_DMA_WAITOK | BUS_DMA_WRITE); if (error) { bus_dmamap_destroy(sc->sc_dmat, hp->adma_map); bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE); bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg); goto adma_done; } adma_done: if (error) { printf("%s: can't allocate DMA descriptor table\n", DEVNAME(hp->sc)); CLR(hp->flags, SHF_USE_DMA); } } /* * Attach the generic SD/MMC bus driver. (The bus driver must * not invoke any chipset functions before it is attached.) */ bzero(&saa, sizeof(saa)); saa.saa_busname = "sdmmc"; saa.sct = &sdhc_functions; saa.sch = hp; saa.caps = SMC_CAPS_4BIT_MODE; saa.dmat = sc->sc_dmat; saa.dma_boundary = sc->sc_dma_boundary; if (ISSET(hp->flags, SHF_USE_DMA)) saa.caps |= SMC_CAPS_DMA; if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) saa.caps |= SMC_CAPS_SD_HIGHSPEED; if (ISSET(caps, SDHC_HIGH_SPEED_SUPP)) saa.caps |= SMC_CAPS_MMC_HIGHSPEED; if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) { uint32_t caps2 = HREAD4(hp, SDHC_CAPABILITIES2); caps2 &= ~(capmask >> 32); caps2 |= capset >> 32; if (ISSET(caps, SDHC_8BIT_MODE_SUPP)) saa.caps |= SMC_CAPS_8BIT_MODE; if (ISSET(caps2, SDHC_DDR50_SUPP)) saa.caps |= SMC_CAPS_MMC_DDR52; } if (ISSET(sc->sc_flags, SDHC_F_NONREMOVABLE)) saa.caps |= SMC_CAPS_NONREMOVABLE; hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL); if (hp->sdmmc == NULL) { error = 0; goto err; } return 0; err: free(hp, M_DEVBUF, sizeof *hp); sc->sc_host[sc->sc_nhosts - 1] = NULL; sc->sc_nhosts--; return (error); } int sdhc_activate(struct device *self, int act) { struct sdhc_softc *sc = (struct sdhc_softc *)self; struct sdhc_host *hp; int n, i, rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); /* Save the host controller state. */ for (n = 0; n < sc->sc_nhosts; n++) { hp = sc->sc_host[n]; for (i = 0; i < sizeof hp->regs; i++) hp->regs[i] = HREAD1(hp, i); } break; case DVACT_RESUME: /* Restore the host controller state. */ for (n = 0; n < sc->sc_nhosts; n++) { hp = sc->sc_host[n]; (void)sdhc_host_reset(hp); for (i = 0; i < sizeof hp->regs; i++) HWRITE1(hp, i, hp->regs[i]); } rv = config_activate_children(self, act); break; case DVACT_POWERDOWN: rv = config_activate_children(self, act); sdhc_shutdown(self); break; default: rv = config_activate_children(self, act); break; } return (rv); } /* * Shutdown hook established by or called from attachment driver. */ void sdhc_shutdown(void *arg) { struct sdhc_softc *sc = arg; struct sdhc_host *hp; int i; /* XXX chip locks up if we don't disable it before reboot. */ for (i = 0; i < sc->sc_nhosts; i++) { hp = sc->sc_host[i]; (void)sdhc_host_reset(hp); } } /* * Reset the host controller. Called during initialization, when * cards are removed, upon resume, and during error recovery. */ int sdhc_host_reset(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = sch; u_int16_t imask; int error; int s; s = splsdmmc(); /* Disable all interrupts. */ HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0); /* * Reset the entire host controller and wait up to 100ms for * the controller to clear the reset bit. */ if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) { splx(s); return (error); } /* Set data timeout counter value to max for now. */ HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX); /* Enable interrupts. */ imask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION | SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT | SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE; HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask); HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK); HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask); HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK); splx(s); return 0; } u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = sch; return hp->ocr; } int sdhc_host_maxblklen(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = sch; return hp->maxblklen; } /* * Return non-zero if the card is currently inserted. */ int sdhc_card_detect(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = sch; if (hp->sc->sc_card_detect) return hp->sc->sc_card_detect(hp->sc); return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ? 1 : 0; } /* * Set or change SD bus voltage and enable or disable SD bus power. * Return zero on success. */ int sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr) { struct sdhc_host *hp = sch; u_int8_t vdd; int s; s = splsdmmc(); /* * Disable bus power before voltage change. */ if (!(hp->sc->sc_flags & SDHC_F_NOPWR0)) HWRITE1(hp, SDHC_POWER_CTL, 0); /* If power is disabled, reset the host and return now. */ if (ocr == 0) { splx(s); (void)sdhc_host_reset(hp); return 0; } /* * Select the maximum voltage according to capabilities. */ ocr &= hp->ocr; if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V)) vdd = SDHC_VOLTAGE_3_3V; else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V)) vdd = SDHC_VOLTAGE_3_0V; else if (ISSET(ocr, MMC_OCR_1_65V_1_95V)) vdd = SDHC_VOLTAGE_1_8V; else { /* Unsupported voltage level requested. */ splx(s); return EINVAL; } /* * Enable bus power. Wait at least 1 ms (or 74 clocks) plus * voltage ramp until power rises. */ HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) | SDHC_BUS_POWER); sdmmc_delay(10000); /* * The host system may not power the bus due to battery low, * etc. In that case, the host controller should clear the * bus power bit. */ if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) { splx(s); return ENXIO; } splx(s); return 0; } /* * Return the smallest possible base clock frequency divisor value * for the CLOCK_CTL register to produce `freq' (KHz). */ static int sdhc_clock_divisor(struct sdhc_host *hp, u_int freq) { int div; if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) { if (hp->clkbase <= freq) return 0; for (div = 2; div <= SDHC_SDCLK_DIV_MAX_V3; div += 2) if ((hp->clkbase / div) <= freq) return (div / 2); } else { for (div = 1; div <= SDHC_SDCLK_DIV_MAX; div *= 2) if ((hp->clkbase / div) <= freq) return (div / 2); } /* No divisor found. */ return -1; } /* * Set or change SDCLK frequency or disable the SD clock. * Return zero on success. */ int sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing) { struct sdhc_host *hp = sch; struct sdhc_softc *sc = hp->sc; int s; int div; int sdclk; int timo; int error = 0; s = splsdmmc(); if (hp->sc->sc_bus_clock_pre) hp->sc->sc_bus_clock_pre(hp->sc, freq, timing); #ifdef DIAGNOSTIC /* Must not stop the clock if commands are in progress. */ if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) && sdhc_card_detect(hp)) printf("sdhc_sdclk_frequency_select: command in progress\n"); #endif /* * Stop SD clock before changing the frequency. */ HWRITE2(hp, SDHC_CLOCK_CTL, 0); if (freq == SDMMC_SDCLK_OFF) goto ret; if (!ISSET(sc->sc_flags, SDHC_F_NO_HS_BIT)) { if (timing == SDMMC_TIMING_LEGACY) HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); else HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED); } if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) { switch (timing) { case SDMMC_TIMING_MMC_DDR52: HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK); HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_DDR50); break; } } /* * Set the minimum base clock frequency divisor. */ if ((div = sdhc_clock_divisor(hp, freq)) < 0) { /* Invalid base clock frequency or `freq' value. */ error = EINVAL; goto ret; } if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) sdclk = SDHC_SDCLK_DIV_V3(div); else sdclk = SDHC_SDCLK_DIV(div); HWRITE2(hp, SDHC_CLOCK_CTL, sdclk); /* * Start internal clock. Wait 10ms for stabilization. */ HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE); for (timo = 1000; timo > 0; timo--) { if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE)) break; sdmmc_delay(10); } if (timo == 0) { error = ETIMEDOUT; goto ret; } /* * Enable SD clock. */ HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE); if (hp->sc->sc_bus_clock_post) hp->sc->sc_bus_clock_post(hp->sc, freq, timing); ret: splx(s); return error; } int sdhc_bus_width(sdmmc_chipset_handle_t sch, int width) { struct sdhc_host *hp = (struct sdhc_host *)sch; int reg; int s; if (width != 1 && width != 4 && width != 8) return EINVAL; s = splsdmmc(); reg = HREAD1(hp, SDHC_HOST_CTL); reg &= ~SDHC_4BIT_MODE; if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) { reg &= ~SDHC_8BIT_MODE; } if (width == 4) { reg |= SDHC_4BIT_MODE; } else if (width == 8) { KASSERT(SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3); reg |= SDHC_8BIT_MODE; } HWRITE1(hp, SDHC_HOST_CTL, reg); splx(s); return 0; } void sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable) { struct sdhc_host *hp = sch; if (enable) { HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); } else { HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT); HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); } } void sdhc_card_intr_ack(sdmmc_chipset_handle_t sch) { struct sdhc_host *hp = sch; HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); } int sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage) { struct sdhc_host *hp = sch; if (hp->sc->sc_signal_voltage) return hp->sc->sc_signal_voltage(hp->sc, signal_voltage); if (SDHC_SPEC_VERSION(hp->version) < SDHC_SPEC_V3) return EINVAL; switch (signal_voltage) { case SDMMC_SIGNAL_VOLTAGE_180: HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); break; case SDMMC_SIGNAL_VOLTAGE_330: HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN); break; default: return EINVAL; } /* Regulator output shall be stable within 5 ms. */ sdmmc_delay(5000); /* Host controller clears this bit if 1.8V signalling fails. */ if (signal_voltage == SDMMC_SIGNAL_VOLTAGE_180 && !ISSET(HREAD2(hp, SDHC_HOST_CTL2), SDHC_1_8V_SIGNAL_EN)) return EIO; return 0; } int sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value) { u_int32_t state; int timeout; for (timeout = 10; timeout > 0; timeout--) { if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask) == value) return 0; sdmmc_delay(10000); } DPRINTF(0,("%s: timeout waiting for %x (state=%b)\n", DEVNAME(hp->sc), value, state, SDHC_PRESENT_STATE_BITS)); return ETIMEDOUT; } void sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd) { struct sdhc_host *hp = sch; int error; /* * Start the MMC command, or mark `cmd' as failed and return. */ error = sdhc_start_command(hp, cmd); if (error != 0) { cmd->c_error = error; SET(cmd->c_flags, SCF_ITSDONE); return; } /* * Wait until the command phase is done, or until the command * is marked done for any other reason. */ if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE, SDHC_COMMAND_TIMEOUT)) { cmd->c_error = ETIMEDOUT; SET(cmd->c_flags, SCF_ITSDONE); return; } /* * The host controller removes bits [0:7] from the response * data (CRC) and we pass the data up unchanged to the bus * driver (without padding). */ if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) { if (ISSET(cmd->c_flags, SCF_RSP_136)) { u_char *p = (u_char *)cmd->c_resp; int i; for (i = 0; i < 15; i++) *p++ = HREAD1(hp, SDHC_RESPONSE + i); } else cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE); } /* * If the command has data to transfer in any direction, * execute the transfer now. */ if (cmd->c_error == 0 && cmd->c_data != NULL) sdhc_transfer_data(hp, cmd); /* Turn off the LED. */ HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON); DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n", DEVNAME(hp->sc), cmd->c_opcode, cmd->c_flags, cmd->c_error)); SET(cmd->c_flags, SCF_ITSDONE); } int sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd) { struct sdhc_adma2_descriptor32 *desc32 = (void *)hp->adma2; struct sdhc_adma2_descriptor64 *desc64 = (void *)hp->adma2; struct sdhc_softc *sc = hp->sc; u_int16_t blksize = 0; u_int16_t blkcount = 0; u_int16_t mode; u_int16_t command; int error; int seg; int s; DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x\n", DEVNAME(hp->sc), cmd->c_opcode, cmd->c_arg, cmd->c_data, cmd->c_datalen, cmd->c_flags)); /* * The maximum block length for commands should be the minimum * of the host buffer size and the card buffer size. (1.7.2) */ /* Fragment the data into proper blocks. */ if (cmd->c_datalen > 0) { blksize = MIN(cmd->c_datalen, cmd->c_blklen); blkcount = cmd->c_datalen / blksize; if (cmd->c_datalen % blksize > 0) { /* XXX: Split this command. (1.7.4) */ printf("%s: data not a multiple of %d bytes\n", DEVNAME(hp->sc), blksize); return EINVAL; } } /* Check limit imposed by 9-bit block count. (1.7.2) */ if (blkcount > SDHC_BLOCK_COUNT_MAX) { printf("%s: too much data\n", DEVNAME(hp->sc)); return EINVAL; } /* Prepare transfer mode register value. (2.2.5) */ mode = 0; if (ISSET(cmd->c_flags, SCF_CMD_READ)) mode |= SDHC_READ_MODE; if (blkcount > 0) { mode |= SDHC_BLOCK_COUNT_ENABLE; if (blkcount > 1) { mode |= SDHC_MULTI_BLOCK_MODE; if (cmd->c_opcode != SD_IO_RW_EXTENDED) mode |= SDHC_AUTO_CMD12_ENABLE; } } if (cmd->c_dmamap && cmd->c_datalen > 0 && ISSET(hp->flags, SHF_USE_DMA)) mode |= SDHC_DMA_ENABLE; /* * Prepare command register value. (2.2.6) */ command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) << SDHC_COMMAND_INDEX_SHIFT; if (ISSET(cmd->c_flags, SCF_RSP_CRC)) command |= SDHC_CRC_CHECK_ENABLE; if (ISSET(cmd->c_flags, SCF_RSP_IDX)) command |= SDHC_INDEX_CHECK_ENABLE; if (cmd->c_data != NULL) command |= SDHC_DATA_PRESENT_SELECT; if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT)) command |= SDHC_NO_RESPONSE; else if (ISSET(cmd->c_flags, SCF_RSP_136)) command |= SDHC_RESP_LEN_136; else if (ISSET(cmd->c_flags, SCF_RSP_BSY)) command |= SDHC_RESP_LEN_48_CHK_BUSY; else command |= SDHC_RESP_LEN_48; /* Wait until command and data inhibit bits are clear. (1.5) */ if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0) return error; s = splsdmmc(); /* Alert the user not to remove the card. */ HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON); /* Set DMA start address if SHF_USE_DMA is set. */ if (cmd->c_dmamap && ISSET(hp->flags, SHF_USE_DMA)) { for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { bus_addr_t paddr = cmd->c_dmamap->dm_segs[seg].ds_addr; uint16_t len = cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ? 0 : cmd->c_dmamap->dm_segs[seg].ds_len; uint16_t attr; attr = SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS; if (seg == cmd->c_dmamap->dm_nsegs - 1) attr |= SDHC_ADMA2_END; if (ISSET(hp->flags, SHF_USE_DMA64)) { desc64[seg].attribute = htole16(attr); desc64[seg].length = htole16(len); desc64[seg].address_lo = htole32((uint64_t)paddr & 0xffffffff); desc64[seg].address_hi = htole32((uint64_t)paddr >> 32); } else { desc32[seg].attribute = htole16(attr); desc32[seg].length = htole16(len); desc32[seg].address = htole32(paddr); } } if (ISSET(hp->flags, SHF_USE_DMA64)) desc64[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); else desc32[cmd->c_dmamap->dm_nsegs].attribute = htole16(0); bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, BUS_DMASYNC_PREWRITE); HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); if (ISSET(hp->flags, SHF_USE_DMA64)) HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA64); else HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA32); HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR, hp->adma_map->dm_segs[0].ds_addr); } else HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT); DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n", DEVNAME(hp->sc), command, mode, blksize, blkcount)); /* * Start a CPU data transfer. Writing to the high order byte * of the SDHC_COMMAND register triggers the SD command. (1.5) */ HWRITE2(hp, SDHC_TRANSFER_MODE, mode); HWRITE2(hp, SDHC_BLOCK_SIZE, blksize); HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount); HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg); HWRITE2(hp, SDHC_COMMAND, command); splx(s); return 0; } void sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd) { struct sdhc_softc *sc = hp->sc; u_char *datap = cmd->c_data; int i, datalen; int mask; int error; if (cmd->c_dmamap) { int status; error = 0; for (;;) { status = sdhc_wait_intr(hp, SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE, SDHC_DMA_TIMEOUT); if (status & SDHC_TRANSFER_COMPLETE) break; if (!status) { error = ETIMEDOUT; break; } } bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE, BUS_DMASYNC_POSTWRITE); goto done; } mask = ISSET(cmd->c_flags, SCF_CMD_READ) ? SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE; error = 0; datalen = cmd->c_datalen; DPRINTF(1,("%s: resp=%#x datalen=%d\n", DEVNAME(hp->sc), MMC_R1(cmd->c_resp), datalen)); #ifdef SDHC_DEBUG /* XXX I forgot why I wanted to know when this happens :-( */ if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) && ISSET(MMC_R1(cmd->c_resp), 0xcb00)) printf("%s: CMD52/53 error response flags %#x\n", DEVNAME(hp->sc), MMC_R1(cmd->c_resp) & 0xff00); #endif while (datalen > 0) { if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY| SDHC_BUFFER_WRITE_READY, SDHC_BUFFER_TIMEOUT)) { error = ETIMEDOUT; break; } if ((error = sdhc_wait_state(hp, mask, mask)) != 0) break; i = MIN(datalen, cmd->c_blklen); if (ISSET(cmd->c_flags, SCF_CMD_READ)) sdhc_read_data(hp, datap, i); else sdhc_write_data(hp, datap, i); datap += i; datalen -= i; } if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE, SDHC_TRANSFER_TIMEOUT)) error = ETIMEDOUT; done: if (error != 0) cmd->c_error = error; SET(cmd->c_flags, SCF_ITSDONE); DPRINTF(1,("%s: data transfer done (error=%d)\n", DEVNAME(hp->sc), cmd->c_error)); } void sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen) { while (datalen > 3) { *(u_int32_t *)datap = HREAD4(hp, SDHC_DATA); datap += 4; datalen -= 4; } if (datalen > 0) { u_int32_t rv = HREAD4(hp, SDHC_DATA); do { *datap++ = rv & 0xff; rv = rv >> 8; } while (--datalen > 0); } } void sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen) { while (datalen > 3) { DPRINTF(3,("%08x\n", *(u_int32_t *)datap)); HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap)); datap += 4; datalen -= 4; } if (datalen > 0) { u_int32_t rv = *datap++; if (datalen > 1) rv |= *datap++ << 8; if (datalen > 2) rv |= *datap++ << 16; DPRINTF(3,("rv %08x\n", rv)); HWRITE4(hp, SDHC_DATA, rv); } } /* Prepare for another command. */ int sdhc_soft_reset(struct sdhc_host *hp, int mask) { int timo; DPRINTF(1,("%s: software reset reg=%#x\n", DEVNAME(hp->sc), mask)); HWRITE1(hp, SDHC_SOFTWARE_RESET, mask); for (timo = 10; timo > 0; timo--) { if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask)) break; sdmmc_delay(10000); HWRITE1(hp, SDHC_SOFTWARE_RESET, 0); } if (timo == 0) { DPRINTF(1,("%s: timeout reg=%#x\n", DEVNAME(hp->sc), HREAD1(hp, SDHC_SOFTWARE_RESET))); HWRITE1(hp, SDHC_SOFTWARE_RESET, 0); return (ETIMEDOUT); } return (0); } int sdhc_wait_intr_cold(struct sdhc_host *hp, int mask, int secs) { int status, usecs; mask |= SDHC_ERROR_INTERRUPT; usecs = secs * 1000000; status = hp->intr_status; while ((status & mask) == 0) { status = HREAD2(hp, SDHC_NINTR_STATUS); if (ISSET(status, SDHC_NINTR_STATUS_MASK)) { HWRITE2(hp, SDHC_NINTR_STATUS, status); if (ISSET(status, SDHC_ERROR_INTERRUPT)) { uint16_t error; error = HREAD2(hp, SDHC_EINTR_STATUS); HWRITE2(hp, SDHC_EINTR_STATUS, error); hp->intr_status |= status; if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR| SDHC_DATA_TIMEOUT_ERROR)) break; } if (ISSET(status, SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY | SDHC_COMMAND_COMPLETE | SDHC_TRANSFER_COMPLETE)) { hp->intr_status |= status; break; } if (ISSET(status, SDHC_CARD_INTERRUPT)) { HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); } continue; } delay(1); if (usecs-- == 0) { status |= SDHC_ERROR_INTERRUPT; break; } } hp->intr_status &= ~(status & mask); return (status & mask); } int sdhc_wait_intr(struct sdhc_host *hp, int mask, int secs) { int status; int s; if (cold) return (sdhc_wait_intr_cold(hp, mask, secs)); mask |= SDHC_ERROR_INTERRUPT; s = splsdmmc(); status = hp->intr_status & mask; while (status == 0) { if (tsleep_nsec(&hp->intr_status, PWAIT, "hcintr", SEC_TO_NSEC(secs)) == EWOULDBLOCK) { status |= SDHC_ERROR_INTERRUPT; break; } status = hp->intr_status & mask; } hp->intr_status &= ~status; DPRINTF(2,("%s: intr status %#x error %#x\n", DEVNAME(hp->sc), status, hp->intr_error_status)); /* Command timeout has higher priority than command complete. */ if (ISSET(status, SDHC_ERROR_INTERRUPT)) { hp->intr_error_status = 0; (void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD); status = 0; } splx(s); return status; } /* * Established by attachment driver at interrupt priority IPL_SDMMC. */ int sdhc_intr(void *arg) { struct sdhc_softc *sc = arg; int host; int done = 0; /* We got an interrupt, but we don't know from which slot. */ for (host = 0; host < sc->sc_nhosts; host++) { struct sdhc_host *hp = sc->sc_host[host]; u_int16_t status; if (hp == NULL) continue; /* Find out which interrupts are pending. */ status = HREAD2(hp, SDHC_NINTR_STATUS); if (!ISSET(status, SDHC_NINTR_STATUS_MASK)) continue; /* no interrupt for us */ /* Acknowledge the interrupts we are about to handle. */ HWRITE2(hp, SDHC_NINTR_STATUS, status); DPRINTF(2,("%s: interrupt status=%b\n", DEVNAME(hp->sc), status, SDHC_NINTR_STATUS_BITS)); /* Claim this interrupt. */ done = 1; /* * Service error interrupts. */ if (ISSET(status, SDHC_ERROR_INTERRUPT)) { u_int16_t error; /* Acknowledge error interrupts. */ error = HREAD2(hp, SDHC_EINTR_STATUS); HWRITE2(hp, SDHC_EINTR_STATUS, error); DPRINTF(2,("%s: error interrupt, status=%b\n", DEVNAME(hp->sc), error, SDHC_EINTR_STATUS_BITS)); if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR| SDHC_DATA_TIMEOUT_ERROR)) { hp->intr_error_status |= error; hp->intr_status |= status; wakeup(&hp->intr_status); } } /* * Wake up the sdmmc event thread to scan for cards. */ if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION)) sdmmc_needs_discover(hp->sdmmc); /* * Wake up the blocking process to service command * related interrupt(s). */ if (ISSET(status, SDHC_BUFFER_READ_READY| SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE| SDHC_TRANSFER_COMPLETE)) { hp->intr_status |= status; wakeup(&hp->intr_status); } /* * Service SD card interrupts. */ if (ISSET(status, SDHC_CARD_INTERRUPT)) { DPRINTF(0,("%s: card interrupt\n", DEVNAME(hp->sc))); HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT); sdmmc_card_intr(hp->sdmmc); } } return done; } void sdhc_needs_discover(struct sdhc_softc *sc) { int host; for (host = 0; host < sc->sc_nhosts; host++) sdmmc_needs_discover(sc->sc_host[host]->sdmmc); } #ifdef SDHC_DEBUG void sdhc_dump_regs(struct sdhc_host *hp) { printf("0x%02x PRESENT_STATE: %b\n", SDHC_PRESENT_STATE, HREAD4(hp, SDHC_PRESENT_STATE), SDHC_PRESENT_STATE_BITS); printf("0x%02x POWER_CTL: %x\n", SDHC_POWER_CTL, HREAD1(hp, SDHC_POWER_CTL)); printf("0x%02x NINTR_STATUS: %x\n", SDHC_NINTR_STATUS, HREAD2(hp, SDHC_NINTR_STATUS)); printf("0x%02x EINTR_STATUS: %x\n", SDHC_EINTR_STATUS, HREAD2(hp, SDHC_EINTR_STATUS)); printf("0x%02x NINTR_STATUS_EN: %x\n", SDHC_NINTR_STATUS_EN, HREAD2(hp, SDHC_NINTR_STATUS_EN)); printf("0x%02x EINTR_STATUS_EN: %x\n", SDHC_EINTR_STATUS_EN, HREAD2(hp, SDHC_EINTR_STATUS_EN)); printf("0x%02x NINTR_SIGNAL_EN: %x\n", SDHC_NINTR_SIGNAL_EN, HREAD2(hp, SDHC_NINTR_SIGNAL_EN)); printf("0x%02x EINTR_SIGNAL_EN: %x\n", SDHC_EINTR_SIGNAL_EN, HREAD2(hp, SDHC_EINTR_SIGNAL_EN)); printf("0x%02x CAPABILITIES: %x\n", SDHC_CAPABILITIES, HREAD4(hp, SDHC_CAPABILITIES)); printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES, HREAD4(hp, SDHC_MAX_CAPABILITIES)); } #endif int sdhc_hibernate_init(sdmmc_chipset_handle_t sch, void *fake_softc) { struct sdhc_host *hp, *fhp; fhp = fake_softc; hp = sch; *fhp = *hp; return (0); }