/* $OpenBSD: usbdi.c,v 1.110 2021/02/03 11:34:24 mglocker Exp $ */ /* $NetBSD: usbdi.c,v 1.103 2002/09/27 15:37:38 provos Exp $ */ /* $FreeBSD: src/sys/dev/usb/usbdi.c,v 1.28 1999/11/17 22:33:49 n_hibma Exp $ */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #ifdef USB_DEBUG #define DPRINTF(x) do { if (usbdebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (usbdebug>(n)) printf x; } while (0) extern int usbdebug; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif void usbd_request_async_cb(struct usbd_xfer *, void *, usbd_status); void usbd_start_next(struct usbd_pipe *pipe); usbd_status usbd_open_pipe_ival(struct usbd_interface *, u_int8_t, u_int8_t, struct usbd_pipe **, int); int usbd_is_dying(struct usbd_device *dev) { return (dev->dying || dev->bus->dying); } void usbd_deactivate(struct usbd_device *dev) { dev->dying = 1; } void usbd_ref_incr(struct usbd_device *dev) { dev->ref_cnt++; } void usbd_ref_decr(struct usbd_device *dev) { if (--dev->ref_cnt == 0) wakeup(&dev->ref_cnt); } void usbd_ref_wait(struct usbd_device *dev) { while (dev->ref_cnt > 0) tsleep_nsec(&dev->ref_cnt, PWAIT, "usbref", SEC_TO_NSEC(60)); } int usbd_get_devcnt(struct usbd_device *dev) { return (dev->ndevs); } void usbd_claim_iface(struct usbd_device *dev, int ifaceno) { dev->ifaces[ifaceno].claimed = 1; } int usbd_iface_claimed(struct usbd_device *dev, int ifaceno) { return (dev->ifaces[ifaceno].claimed); } #ifdef USB_DEBUG void usbd_dump_iface(struct usbd_interface *iface) { printf("%s: iface=%p\n", __func__, iface); if (iface == NULL) return; printf(" device=%p idesc=%p index=%d altindex=%d priv=%p\n", iface->device, iface->idesc, iface->index, iface->altindex, iface->priv); } void usbd_dump_device(struct usbd_device *dev) { printf("%s: dev=%p\n", __func__, dev); if (dev == NULL) return; printf(" bus=%p default_pipe=%p\n", dev->bus, dev->default_pipe); printf(" address=%d config=%d depth=%d speed=%d self_powered=%d " "power=%d langid=%d\n", dev->address, dev->config, dev->depth, dev->speed, dev->self_powered, dev->power, dev->langid); } void usbd_dump_endpoint(struct usbd_endpoint *endp) { printf("%s: endp=%p\n", __func__, endp); if (endp == NULL) return; printf(" edesc=%p refcnt=%d\n", endp->edesc, endp->refcnt); if (endp->edesc) printf(" bEndpointAddress=0x%02x\n", endp->edesc->bEndpointAddress); } void usbd_dump_queue(struct usbd_pipe *pipe) { struct usbd_xfer *xfer; printf("%s: pipe=%p\n", __func__, pipe); SIMPLEQ_FOREACH(xfer, &pipe->queue, next) { printf(" xfer=%p\n", xfer); } } void usbd_dump_pipe(struct usbd_pipe *pipe) { printf("%s: pipe=%p\n", __func__, pipe); if (pipe == NULL) return; usbd_dump_iface(pipe->iface); usbd_dump_device(pipe->device); usbd_dump_endpoint(pipe->endpoint); printf(" (usbd_dump_pipe:)\n running=%d aborting=%d\n", pipe->running, pipe->aborting); printf(" intrxfer=%p, repeat=%d, interval=%d\n", pipe->intrxfer, pipe->repeat, pipe->interval); } #endif usbd_status usbd_open_pipe(struct usbd_interface *iface, u_int8_t address, u_int8_t flags, struct usbd_pipe **pipe) { return (usbd_open_pipe_ival(iface, address, flags, pipe, USBD_DEFAULT_INTERVAL)); } usbd_status usbd_open_pipe_ival(struct usbd_interface *iface, u_int8_t address, u_int8_t flags, struct usbd_pipe **pipe, int ival) { struct usbd_pipe *p; struct usbd_endpoint *ep; usbd_status err; int i; DPRINTFN(3,("%s: iface=%p address=0x%x flags=0x%x\n", __func__, iface, address, flags)); for (i = 0; i < iface->idesc->bNumEndpoints; i++) { ep = &iface->endpoints[i]; if (ep->edesc == NULL) return (USBD_IOERROR); if (ep->edesc->bEndpointAddress == address) goto found; } return (USBD_BAD_ADDRESS); found: if ((flags & USBD_EXCLUSIVE_USE) && ep->refcnt != 0) return (USBD_IN_USE); err = usbd_setup_pipe(iface->device, iface, ep, ival, &p); if (err) return (err); LIST_INSERT_HEAD(&iface->pipes, p, next); *pipe = p; return (USBD_NORMAL_COMPLETION); } usbd_status usbd_open_pipe_intr(struct usbd_interface *iface, u_int8_t address, u_int8_t flags, struct usbd_pipe **pipe, void *priv, void *buffer, u_int32_t len, usbd_callback cb, int ival) { usbd_status err; struct usbd_xfer *xfer; struct usbd_pipe *ipipe; DPRINTFN(3,("%s: address=0x%x flags=0x%x len=%d\n", __func__, address, flags, len)); err = usbd_open_pipe_ival(iface, address, USBD_EXCLUSIVE_USE, &ipipe, ival); if (err) return (err); xfer = usbd_alloc_xfer(iface->device); if (xfer == NULL) { err = USBD_NOMEM; goto bad1; } usbd_setup_xfer(xfer, ipipe, priv, buffer, len, flags, USBD_NO_TIMEOUT, cb); ipipe->intrxfer = xfer; ipipe->repeat = 1; err = usbd_transfer(xfer); *pipe = ipipe; if (err != USBD_IN_PROGRESS) goto bad2; return (USBD_NORMAL_COMPLETION); bad2: ipipe->intrxfer = NULL; ipipe->repeat = 0; usbd_free_xfer(xfer); bad1: usbd_close_pipe(ipipe); return (err); } usbd_status usbd_close_pipe(struct usbd_pipe *pipe) { #ifdef DIAGNOSTIC if (pipe == NULL) { printf("usbd_close_pipe: pipe==NULL\n"); return (USBD_NORMAL_COMPLETION); } #endif if (!SIMPLEQ_EMPTY(&pipe->queue)) usbd_abort_pipe(pipe); /* Default pipes are never linked */ if (pipe->iface != NULL) LIST_REMOVE(pipe, next); pipe->endpoint->refcnt--; pipe->methods->close(pipe); if (pipe->intrxfer != NULL) usbd_free_xfer(pipe->intrxfer); free(pipe, M_USB, pipe->pipe_size); return (USBD_NORMAL_COMPLETION); } usbd_status usbd_transfer(struct usbd_xfer *xfer) { struct usbd_pipe *pipe = xfer->pipe; struct usbd_bus *bus = pipe->device->bus; int polling = bus->use_polling; usbd_status err; int flags, s; if (usbd_is_dying(pipe->device)) return (USBD_IOERROR); DPRINTFN(5,("%s: xfer=%p, flags=%d, pipe=%p, running=%d\n", __func__, xfer, xfer->flags, pipe, pipe->running)); #ifdef USB_DEBUG if (usbdebug > 5) usbd_dump_queue(pipe); #endif xfer->done = 0; xfer->status = USBD_NOT_STARTED; if (pipe->aborting) return (USBD_CANCELLED); /* If there is no buffer, allocate one. */ if ((xfer->rqflags & URQ_DEV_DMABUF) == 0) { #ifdef DIAGNOSTIC if (xfer->rqflags & URQ_AUTO_DMABUF) printf("usbd_transfer: has old buffer!\n"); #endif err = usb_allocmem(bus, xfer->length, 0, 0, &xfer->dmabuf); if (err) return (err); xfer->rqflags |= URQ_AUTO_DMABUF; } if (!usbd_xfer_isread(xfer) && (xfer->flags & USBD_NO_COPY) == 0) memcpy(KERNADDR(&xfer->dmabuf, 0), xfer->buffer, xfer->length); usb_tap(bus, xfer, USBTAP_DIR_OUT); err = pipe->methods->transfer(xfer); if (err != USBD_IN_PROGRESS && err != USBD_NORMAL_COMPLETION) { /* The transfer has not been queued, so free buffer. */ if (xfer->rqflags & URQ_AUTO_DMABUF) { usb_freemem(bus, &xfer->dmabuf); xfer->rqflags &= ~URQ_AUTO_DMABUF; } } if (!(xfer->flags & USBD_SYNCHRONOUS)) return (err); /* Sync transfer, wait for completion. */ if (err != USBD_IN_PROGRESS) return (err); s = splusb(); if (polling) { int timo; for (timo = xfer->timeout; timo >= 0; timo--) { usb_delay_ms(bus, 1); if (bus->dying) { xfer->status = USBD_IOERROR; usb_transfer_complete(xfer); break; } usbd_dopoll(pipe->device); if (xfer->done) break; } if (timo < 0) { xfer->status = USBD_TIMEOUT; usb_transfer_complete(xfer); } } else { while (!xfer->done) { flags = PRIBIO|(xfer->flags & USBD_CATCH ? PCATCH : 0); err = tsleep_nsec(xfer, flags, "usbsyn", INFSLP); if (err && !xfer->done) { usbd_abort_pipe(pipe); if (err == EINTR) xfer->status = USBD_INTERRUPTED; else xfer->status = USBD_TIMEOUT; } } } splx(s); return (xfer->status); } void * usbd_alloc_buffer(struct usbd_xfer *xfer, u_int32_t size) { struct usbd_bus *bus = xfer->device->bus; usbd_status err; #ifdef DIAGNOSTIC if (xfer->rqflags & (URQ_DEV_DMABUF | URQ_AUTO_DMABUF)) printf("usbd_alloc_buffer: xfer already has a buffer\n"); #endif err = usb_allocmem(bus, size, 0, 0, &xfer->dmabuf); if (err) return (NULL); xfer->rqflags |= URQ_DEV_DMABUF; return (KERNADDR(&xfer->dmabuf, 0)); } void usbd_free_buffer(struct usbd_xfer *xfer) { #ifdef DIAGNOSTIC if (!(xfer->rqflags & (URQ_DEV_DMABUF | URQ_AUTO_DMABUF))) { printf("usbd_free_buffer: no buffer\n"); return; } #endif xfer->rqflags &= ~(URQ_DEV_DMABUF | URQ_AUTO_DMABUF); usb_freemem(xfer->device->bus, &xfer->dmabuf); } struct usbd_xfer * usbd_alloc_xfer(struct usbd_device *dev) { struct usbd_xfer *xfer; xfer = dev->bus->methods->allocx(dev->bus); if (xfer == NULL) return (NULL); #ifdef DIAGNOSTIC xfer->busy_free = XFER_FREE; #endif xfer->device = dev; timeout_set(&xfer->timeout_handle, NULL, NULL); DPRINTFN(5,("usbd_alloc_xfer() = %p\n", xfer)); return (xfer); } void usbd_free_xfer(struct usbd_xfer *xfer) { DPRINTFN(5,("%s: %p\n", __func__, xfer)); if (xfer->rqflags & (URQ_DEV_DMABUF | URQ_AUTO_DMABUF)) usbd_free_buffer(xfer); #ifdef DIAGNOSTIC if (xfer->busy_free != XFER_FREE) { printf("%s: xfer=%p not free\n", __func__, xfer); return; } #endif xfer->device->bus->methods->freex(xfer->device->bus, xfer); } void usbd_setup_xfer(struct usbd_xfer *xfer, struct usbd_pipe *pipe, void *priv, void *buffer, u_int32_t length, u_int16_t flags, u_int32_t timeout, usbd_callback callback) { xfer->pipe = pipe; xfer->priv = priv; xfer->buffer = buffer; xfer->length = length; xfer->actlen = 0; xfer->flags = flags; xfer->timeout = timeout; xfer->status = USBD_NOT_STARTED; xfer->callback = callback; xfer->rqflags &= ~URQ_REQUEST; xfer->nframes = 0; } void usbd_setup_default_xfer(struct usbd_xfer *xfer, struct usbd_device *dev, void *priv, u_int32_t timeout, usb_device_request_t *req, void *buffer, u_int32_t length, u_int16_t flags, usbd_callback callback) { xfer->pipe = dev->default_pipe; xfer->priv = priv; xfer->buffer = buffer; xfer->length = length; xfer->actlen = 0; xfer->flags = flags; xfer->timeout = timeout; xfer->status = USBD_NOT_STARTED; xfer->callback = callback; xfer->request = *req; xfer->rqflags |= URQ_REQUEST; xfer->nframes = 0; } void usbd_setup_isoc_xfer(struct usbd_xfer *xfer, struct usbd_pipe *pipe, void *priv, u_int16_t *frlengths, u_int32_t nframes, u_int16_t flags, usbd_callback callback) { int i; xfer->pipe = pipe; xfer->priv = priv; xfer->buffer = 0; xfer->length = 0; for (i = 0; i < nframes; i++) xfer->length += frlengths[i]; xfer->actlen = 0; xfer->flags = flags; xfer->timeout = USBD_NO_TIMEOUT; xfer->status = USBD_NOT_STARTED; xfer->callback = callback; xfer->rqflags &= ~URQ_REQUEST; xfer->frlengths = frlengths; xfer->nframes = nframes; } void usbd_get_xfer_status(struct usbd_xfer *xfer, void **priv, void **buffer, u_int32_t *count, usbd_status *status) { if (priv != NULL) *priv = xfer->priv; if (buffer != NULL) *buffer = xfer->buffer; if (count != NULL) *count = xfer->actlen; if (status != NULL) *status = xfer->status; } usb_config_descriptor_t * usbd_get_config_descriptor(struct usbd_device *dev) { #ifdef DIAGNOSTIC if (dev == NULL) { printf("usbd_get_config_descriptor: dev == NULL\n"); return (NULL); } #endif return (dev->cdesc); } usb_interface_descriptor_t * usbd_get_interface_descriptor(struct usbd_interface *iface) { #ifdef DIAGNOSTIC if (iface == NULL) { printf("usbd_get_interface_descriptor: dev == NULL\n"); return (NULL); } #endif return (iface->idesc); } usb_device_descriptor_t * usbd_get_device_descriptor(struct usbd_device *dev) { return (&dev->ddesc); } usb_endpoint_descriptor_t * usbd_interface2endpoint_descriptor(struct usbd_interface *iface, u_int8_t index) { if (index >= iface->idesc->bNumEndpoints) return (0); return (iface->endpoints[index].edesc); } void usbd_abort_pipe(struct usbd_pipe *pipe) { struct usbd_xfer *xfer; int s; #ifdef DIAGNOSTIC if (pipe == NULL) { printf("usbd_abort_pipe: pipe==NULL\n"); return; } #endif s = splusb(); DPRINTFN(2,("%s: pipe=%p\n", __func__, pipe)); #ifdef USB_DEBUG if (usbdebug > 5) usbd_dump_queue(pipe); #endif pipe->repeat = 0; pipe->aborting = 1; while ((xfer = SIMPLEQ_FIRST(&pipe->queue)) != NULL) { DPRINTFN(2,("%s: pipe=%p xfer=%p (methods=%p)\n", __func__, pipe, xfer, pipe->methods)); /* Make the HC abort it (and invoke the callback). */ pipe->methods->abort(xfer); /* XXX only for non-0 usbd_clear_endpoint_stall(pipe); */ } pipe->aborting = 0; splx(s); } usbd_status usbd_clear_endpoint_stall(struct usbd_pipe *pipe) { struct usbd_device *dev = pipe->device; usb_device_request_t req; usbd_status err; DPRINTFN(8, ("usbd_clear_endpoint_stall\n")); /* * Clearing en endpoint stall resets the endpoint toggle, so * do the same to the HC toggle. */ usbd_clear_endpoint_toggle(pipe); req.bmRequestType = UT_WRITE_ENDPOINT; req.bRequest = UR_CLEAR_FEATURE; USETW(req.wValue, UF_ENDPOINT_HALT); USETW(req.wIndex, pipe->endpoint->edesc->bEndpointAddress); USETW(req.wLength, 0); err = usbd_do_request(dev, &req, 0); return (err); } usbd_status usbd_clear_endpoint_stall_async(struct usbd_pipe *pipe) { struct usbd_device *dev = pipe->device; struct usbd_xfer *xfer; usb_device_request_t req; usbd_status err; usbd_clear_endpoint_toggle(pipe); req.bmRequestType = UT_WRITE_ENDPOINT; req.bRequest = UR_CLEAR_FEATURE; USETW(req.wValue, UF_ENDPOINT_HALT); USETW(req.wIndex, pipe->endpoint->edesc->bEndpointAddress); USETW(req.wLength, 0); xfer = usbd_alloc_xfer(dev); if (xfer == NULL) return (USBD_NOMEM); err = usbd_request_async(xfer, &req, NULL, NULL); return (err); } void usbd_clear_endpoint_toggle(struct usbd_pipe *pipe) { if (pipe->methods->cleartoggle != NULL) pipe->methods->cleartoggle(pipe); } usbd_status usbd_device2interface_handle(struct usbd_device *dev, u_int8_t ifaceno, struct usbd_interface **iface) { u_int8_t idx; if (dev->cdesc == NULL) return (USBD_NOT_CONFIGURED); if (ifaceno < dev->cdesc->bNumInterfaces) { *iface = &dev->ifaces[ifaceno]; return (USBD_NORMAL_COMPLETION); } /* * The correct interface should be at dev->ifaces[ifaceno], but we've * seen non-compliant devices in the wild which present non-contiguous * interface numbers and this skews the indices. For this reason we * linearly search the interface array. */ for (idx = 0; idx < dev->cdesc->bNumInterfaces; idx++) { if (dev->ifaces[idx].idesc->bInterfaceNumber == ifaceno) { *iface = &dev->ifaces[idx]; return (USBD_NORMAL_COMPLETION); } } return (USBD_INVAL); } /* XXXX use altno */ usbd_status usbd_set_interface(struct usbd_interface *iface, int altno) { usb_device_request_t req; usbd_status err; struct usbd_endpoint *endpoints; int nendpt; if (LIST_FIRST(&iface->pipes) != 0) return (USBD_IN_USE); endpoints = iface->endpoints; nendpt = iface->nendpt; err = usbd_fill_iface_data(iface->device, iface->index, altno); if (err) return (err); /* new setting works, we can free old endpoints */ free(endpoints, M_USB, nendpt * sizeof(*endpoints)); #ifdef DIAGNOSTIC if (iface->idesc == NULL) { printf("usbd_set_interface: NULL pointer\n"); return (USBD_INVAL); } #endif req.bmRequestType = UT_WRITE_INTERFACE; req.bRequest = UR_SET_INTERFACE; USETW(req.wValue, iface->idesc->bAlternateSetting); USETW(req.wIndex, iface->idesc->bInterfaceNumber); USETW(req.wLength, 0); return (usbd_do_request(iface->device, &req, 0)); } int usbd_get_no_alts(usb_config_descriptor_t *cdesc, int ifaceno) { char *p = (char *)cdesc; char *end = p + UGETW(cdesc->wTotalLength); usb_interface_descriptor_t *d; int n; for (n = 0; p < end; p += d->bLength) { d = (usb_interface_descriptor_t *)p; if (p + d->bLength <= end && d->bDescriptorType == UDESC_INTERFACE && d->bInterfaceNumber == ifaceno) n++; } return (n); } int usbd_get_interface_altindex(struct usbd_interface *iface) { return (iface->altindex); } /*** Internal routines ***/ /* Called at splusb() */ void usb_transfer_complete(struct usbd_xfer *xfer) { struct usbd_pipe *pipe = xfer->pipe; struct usbd_bus *bus = pipe->device->bus; int polling = bus->use_polling; int status, flags; #if 0 /* XXX ohci_intr1() calls usb_transfer_complete() for RHSC. */ splsoftassert(IPL_SOFTUSB); #endif DPRINTFN(5, ("usb_transfer_complete: pipe=%p xfer=%p status=%d " "actlen=%d\n", pipe, xfer, xfer->status, xfer->actlen)); #ifdef DIAGNOSTIC if (xfer->busy_free != XFER_ONQU) { printf("%s: xfer=%p not on queue\n", __func__, xfer); return; } #endif /* XXXX */ if (polling) pipe->running = 0; #ifdef DIAGNOSTIC if (xfer->actlen > xfer->length) { printf("%s: actlen > len %u > %u\n", __func__, xfer->actlen, xfer->length); xfer->actlen = xfer->length; } #endif if (usbd_xfer_isread(xfer) && xfer->actlen != 0 && (xfer->flags & USBD_NO_COPY) == 0) memcpy(xfer->buffer, KERNADDR(&xfer->dmabuf, 0), xfer->actlen); /* if we allocated the buffer in usbd_transfer() we free it here. */ if (xfer->rqflags & URQ_AUTO_DMABUF) { if (!pipe->repeat) { usb_freemem(bus, &xfer->dmabuf); xfer->rqflags &= ~URQ_AUTO_DMABUF; } } if (!pipe->repeat) { /* Remove request from queue. */ KASSERT(xfer == SIMPLEQ_FIRST(&pipe->queue)); SIMPLEQ_REMOVE_HEAD(&pipe->queue, next); #ifdef DIAGNOSTIC xfer->busy_free = XFER_FREE; #endif } DPRINTFN(5,("%s: repeat=%d new head=%p\n", __func__, pipe->repeat, SIMPLEQ_FIRST(&pipe->queue))); /* Count completed transfers. */ ++bus->stats.uds_requests [UE_GET_XFERTYPE(pipe->endpoint->edesc->bmAttributes)]; xfer->done = 1; if (!xfer->status && xfer->actlen < xfer->length && !(xfer->flags & USBD_SHORT_XFER_OK)) { DPRINTFN(-1,("%s: short transfer %d<%d\n", __func__, xfer->actlen, xfer->length)); xfer->status = USBD_SHORT_XFER; } usb_tap(bus, xfer, USBTAP_DIR_IN); /* * We cannot dereference ``xfer'' after calling the callback as * it might free it. */ status = xfer->status; flags = xfer->flags; if (pipe->repeat) { if (xfer->callback) xfer->callback(xfer, xfer->priv, xfer->status); pipe->methods->done(xfer); } else { pipe->methods->done(xfer); if (xfer->callback) xfer->callback(xfer, xfer->priv, xfer->status); } if ((flags & USBD_SYNCHRONOUS) && !polling) wakeup(xfer); if (!pipe->repeat) { /* XXX should we stop the queue on all errors? */ if ((status == USBD_CANCELLED || status == USBD_IOERROR || status == USBD_TIMEOUT) && pipe->iface != NULL) /* not control pipe */ pipe->running = 0; else usbd_start_next(pipe); } } usbd_status usb_insert_transfer(struct usbd_xfer *xfer) { struct usbd_pipe *pipe = xfer->pipe; usbd_status err; int s; DPRINTFN(5,("%s: pipe=%p running=%d timeout=%d\n", __func__, pipe, pipe->running, xfer->timeout)); #ifdef DIAGNOSTIC if (xfer->busy_free != XFER_FREE) { printf("%s: xfer=%p not free\n", __func__, xfer); return (USBD_INVAL); } xfer->busy_free = XFER_ONQU; #endif s = splusb(); SIMPLEQ_INSERT_TAIL(&pipe->queue, xfer, next); if (pipe->running) err = USBD_IN_PROGRESS; else { pipe->running = 1; err = USBD_NORMAL_COMPLETION; } splx(s); return (err); } /* Called at splusb() */ void usbd_start_next(struct usbd_pipe *pipe) { struct usbd_xfer *xfer; usbd_status err; splsoftassert(IPL_SOFTUSB); #ifdef DIAGNOSTIC if (pipe == NULL) { printf("usbd_start_next: pipe == NULL\n"); return; } if (pipe->methods == NULL || pipe->methods->start == NULL) { printf("%s: pipe=%p no start method\n", __func__, pipe); return; } #endif /* Get next request in queue. */ xfer = SIMPLEQ_FIRST(&pipe->queue); DPRINTFN(5, ("%s: pipe=%p, xfer=%p\n", __func__, pipe, xfer)); if (xfer == NULL) { pipe->running = 0; } else { err = pipe->methods->start(xfer); if (err != USBD_IN_PROGRESS) { printf("%s: error=%d\n", __func__, err); pipe->running = 0; /* XXX do what? */ } } } usbd_status usbd_do_request(struct usbd_device *dev, usb_device_request_t *req, void *data) { return (usbd_do_request_flags(dev, req, data, 0, 0, USBD_DEFAULT_TIMEOUT)); } usbd_status usbd_do_request_flags(struct usbd_device *dev, usb_device_request_t *req, void *data, uint16_t flags, int *actlen, uint32_t timeout) { struct usbd_xfer *xfer; usbd_status err; #ifdef DIAGNOSTIC if (dev->bus->intr_context) { printf("usbd_do_request: not in process context\n"); return (USBD_INVAL); } #endif /* If the bus is gone, don't go any further. */ if (usbd_is_dying(dev)) return (USBD_IOERROR); xfer = usbd_alloc_xfer(dev); if (xfer == NULL) return (USBD_NOMEM); usbd_setup_default_xfer(xfer, dev, 0, timeout, req, data, UGETW(req->wLength), flags | USBD_SYNCHRONOUS, 0); err = usbd_transfer(xfer); if (actlen != NULL) *actlen = xfer->actlen; if (err == USBD_STALLED) { /* * The control endpoint has stalled. Control endpoints * should not halt, but some may do so anyway so clear * any halt condition. */ usb_device_request_t treq; usb_status_t status; u_int16_t s; usbd_status nerr; treq.bmRequestType = UT_READ_ENDPOINT; treq.bRequest = UR_GET_STATUS; USETW(treq.wValue, 0); USETW(treq.wIndex, 0); USETW(treq.wLength, sizeof(usb_status_t)); usbd_setup_default_xfer(xfer, dev, 0, USBD_DEFAULT_TIMEOUT, &treq, &status, sizeof(usb_status_t), USBD_SYNCHRONOUS, 0); nerr = usbd_transfer(xfer); if (nerr) goto bad; s = UGETW(status.wStatus); DPRINTF(("%s: status = 0x%04x\n", __func__, s)); if (!(s & UES_HALT)) goto bad; treq.bmRequestType = UT_WRITE_ENDPOINT; treq.bRequest = UR_CLEAR_FEATURE; USETW(treq.wValue, UF_ENDPOINT_HALT); USETW(treq.wIndex, 0); USETW(treq.wLength, 0); usbd_setup_default_xfer(xfer, dev, 0, USBD_DEFAULT_TIMEOUT, &treq, &status, 0, USBD_SYNCHRONOUS, 0); nerr = usbd_transfer(xfer); if (nerr) goto bad; } bad: usbd_free_xfer(xfer); return (err); } void usbd_request_async_cb(struct usbd_xfer *xfer, void *priv, usbd_status status) { usbd_free_xfer(xfer); } /* * Execute a request without waiting for completion. * Can be used from interrupt context. */ usbd_status usbd_request_async(struct usbd_xfer *xfer, usb_device_request_t *req, void *priv, usbd_callback callback) { usbd_status err; if (callback == NULL) callback = usbd_request_async_cb; usbd_setup_default_xfer(xfer, xfer->device, priv, USBD_DEFAULT_TIMEOUT, req, NULL, UGETW(req->wLength), USBD_NO_COPY, callback); err = usbd_transfer(xfer); if (err != USBD_IN_PROGRESS) { usbd_free_xfer(xfer); return (err); } return (USBD_NORMAL_COMPLETION); } const struct usbd_quirks * usbd_get_quirks(struct usbd_device *dev) { #ifdef DIAGNOSTIC if (dev == NULL) { printf("usbd_get_quirks: dev == NULL\n"); return 0; } #endif return (dev->quirks); } /* XXX do periodic free() of free list */ /* * Called from keyboard driver when in polling mode. */ void usbd_dopoll(struct usbd_device *udev) { udev->bus->methods->do_poll(udev->bus); } void usbd_set_polling(struct usbd_device *dev, int on) { if (on) dev->bus->use_polling++; else dev->bus->use_polling--; /* When polling we need to make sure there is nothing pending to do. */ if (dev->bus->use_polling) dev->bus->methods->soft_intr(dev->bus); } usb_endpoint_descriptor_t * usbd_get_endpoint_descriptor(struct usbd_interface *iface, u_int8_t address) { struct usbd_endpoint *ep; int i; for (i = 0; i < iface->idesc->bNumEndpoints; i++) { ep = &iface->endpoints[i]; if (ep->edesc->bEndpointAddress == address) return (iface->endpoints[i].edesc); } return (0); } /* * usbd_ratecheck() can limit the number of error messages that occurs. * When a device is unplugged it may take up to 0.25s for the hub driver * to notice it. If the driver continuously tries to do I/O operations * this can generate a large number of messages. */ int usbd_ratecheck(struct timeval *last) { static struct timeval errinterval = { 0, 250000 }; /* 0.25 s*/ return (ratecheck(last, &errinterval)); } /* * Search for a vendor/product pair in an array. The item size is * given as an argument. */ const struct usb_devno * usbd_match_device(const struct usb_devno *tbl, u_int nentries, u_int sz, u_int16_t vendor, u_int16_t product) { while (nentries-- > 0) { u_int16_t tproduct = tbl->ud_product; if (tbl->ud_vendor == vendor && (tproduct == product || tproduct == USB_PRODUCT_ANY)) return (tbl); tbl = (const struct usb_devno *)((const char *)tbl + sz); } return (NULL); } void usbd_desc_iter_init(struct usbd_device *dev, struct usbd_desc_iter *iter) { const usb_config_descriptor_t *cd = usbd_get_config_descriptor(dev); iter->cur = (const uByte *)cd; iter->end = (const uByte *)cd + UGETW(cd->wTotalLength); } const usb_descriptor_t * usbd_desc_iter_next(struct usbd_desc_iter *iter) { const usb_descriptor_t *desc; if (iter->cur + sizeof(usb_descriptor_t) >= iter->end) { if (iter->cur != iter->end) printf("usbd_desc_iter_next: bad descriptor\n"); return NULL; } desc = (const usb_descriptor_t *)iter->cur; if (desc->bLength == 0) { printf("usbd_desc_iter_next: descriptor length = 0\n"); return NULL; } iter->cur += desc->bLength; if (iter->cur > iter->end) { printf("usbd_desc_iter_next: descriptor length too large\n"); return NULL; } return desc; } int usbd_str(usb_string_descriptor_t *p, int l, const char *s) { int i; if (l == 0) return (0); p->bLength = 2 * strlen(s) + 2; if (l == 1) return (1); p->bDescriptorType = UDESC_STRING; l -= 2; for (i = 0; s[i] && l > 1; i++, l -= 2) USETW2(p->bString[i], 0, s[i]); return (2 * i + 2); }