/* $OpenBSD: wsmouse.c,v 1.72 2024/05/17 20:11:58 miod Exp $ */ /* $NetBSD: wsmouse.c,v 1.35 2005/02/27 00:27:52 perry Exp $ */ /* * Copyright (c) 1996, 1997 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ms.c 8.1 (Berkeley) 6/11/93 */ /* * Copyright (c) 2015, 2016 Ulf Brosziewski * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Mouse driver. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wsmux.h" #include "wsdisplay.h" #include "wskbd.h" #include #if defined(WSMUX_DEBUG) && NWSMUX > 0 #define DPRINTF(x) if (wsmuxdebug) printf x extern int wsmuxdebug; #else #define DPRINTF(x) #endif struct wsmouse_softc { struct wsevsrc sc_base; const struct wsmouse_accessops *sc_accessops; void *sc_accesscookie; struct wsmouseinput sc_input; int sc_refcnt; u_char sc_dying; /* device is being detached */ }; int wsmouse_match(struct device *, void *, void *); void wsmouse_attach(struct device *, struct device *, void *); int wsmouse_detach(struct device *, int); int wsmouse_activate(struct device *, int); int wsmouse_do_ioctl(struct wsmouse_softc *, u_long, caddr_t, int, struct proc *); #if NWSMUX > 0 int wsmouse_mux_open(struct wsevsrc *, struct wseventvar *); int wsmouse_mux_close(struct wsevsrc *); #endif int wsmousedoioctl(struct device *, u_long, caddr_t, int, struct proc *); int wsmousedoopen(struct wsmouse_softc *, struct wseventvar *); struct cfdriver wsmouse_cd = { NULL, "wsmouse", DV_TTY }; const struct cfattach wsmouse_ca = { sizeof (struct wsmouse_softc), wsmouse_match, wsmouse_attach, wsmouse_detach, wsmouse_activate }; #if NWSMUX > 0 struct wssrcops wsmouse_srcops = { .type = WSMUX_MOUSE, .dopen = wsmouse_mux_open, .dclose = wsmouse_mux_close, .dioctl = wsmousedoioctl, .ddispioctl = NULL, .dsetdisplay = NULL, }; #endif /* * Print function (for parent devices). */ int wsmousedevprint(void *aux, const char *pnp) { if (pnp) printf("wsmouse at %s", pnp); return (UNCONF); } int wsmouse_match(struct device *parent, void *match, void *aux) { return (1); } void wsmouse_attach(struct device *parent, struct device *self, void *aux) { struct wsmouse_softc *sc = (struct wsmouse_softc *)self; struct wsmousedev_attach_args *ap = aux; #if NWSMUX > 0 int mux, error; #endif sc->sc_accessops = ap->accessops; sc->sc_accesscookie = ap->accesscookie; sc->sc_input.evar = &sc->sc_base.me_evp; #if NWSMUX > 0 sc->sc_base.me_ops = &wsmouse_srcops; mux = sc->sc_base.me_dv.dv_cfdata->wsmousedevcf_mux; if (mux >= 0) { error = wsmux_attach_sc(wsmux_getmux(mux), &sc->sc_base); if (error) printf(" attach error=%d", error); else printf(" mux %d", mux); } #else #if 0 /* not worth keeping, especially since the default value is not -1... */ if (sc->sc_base.me_dv.dv_cfdata->wsmousedevcf_mux >= 0) printf(" (mux ignored)"); #endif #endif /* NWSMUX > 0 */ printf("\n"); } int wsmouse_activate(struct device *self, int act) { struct wsmouse_softc *sc = (struct wsmouse_softc *)self; if (act == DVACT_DEACTIVATE) sc->sc_dying = 1; return (0); } /* * Detach a mouse. To keep track of users of the softc we keep * a reference count that's incremented while inside, e.g., read. * If the mouse is active and the reference count is > 0 (0 is the * normal state) we post an event and then wait for the process * that had the reference to wake us up again. Then we blow away the * vnode and return (which will deallocate the softc). */ int wsmouse_detach(struct device *self, int flags) { struct wsmouse_softc *sc = (struct wsmouse_softc *)self; struct wseventvar *evar; int maj, mn; int s; #if NWSMUX > 0 /* Tell parent mux we're leaving. */ if (sc->sc_base.me_parent != NULL) { DPRINTF(("%s\n", __func__)); wsmux_detach_sc(&sc->sc_base); } #endif /* If we're open ... */ evar = sc->sc_base.me_evp; if (evar != NULL) { s = spltty(); if (--sc->sc_refcnt >= 0) { /* Wake everyone by generating a dummy event. */ if (++evar->ws_put >= WSEVENT_QSIZE) evar->ws_put = 0; WSEVENT_WAKEUP(evar); /* Wait for processes to go away. */ if (tsleep_nsec(sc, PZERO, "wsmdet", SEC_TO_NSEC(60))) printf("wsmouse_detach: %s didn't detach\n", sc->sc_base.me_dv.dv_xname); } splx(s); } /* locate the major number */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == wsmouseopen) break; /* Nuke the vnodes for any open instances (calls close). */ mn = self->dv_unit; vdevgone(maj, mn, mn, VCHR); wsmouse_input_cleanup(&sc->sc_input); return (0); } int wsmouseopen(dev_t dev, int flags, int mode, struct proc *p) { struct wsmouse_softc *sc; struct wseventvar *evar; int error, unit; unit = minor(dev); if (unit >= wsmouse_cd.cd_ndevs || /* make sure it was attached */ (sc = wsmouse_cd.cd_devs[unit]) == NULL) return (ENXIO); #if NWSMUX > 0 DPRINTF(("%s: %s mux=%p\n", __func__, sc->sc_base.me_dv.dv_xname, sc->sc_base.me_parent)); #endif if (sc->sc_dying) return (EIO); if ((flags & (FREAD | FWRITE)) == FWRITE) return (0); /* always allow open for write so ioctl() is possible. */ #if NWSMUX > 0 if (sc->sc_base.me_parent != NULL) { /* Grab the mouse out of the greedy hands of the mux. */ DPRINTF(("%s: detach\n", __func__)); wsmux_detach_sc(&sc->sc_base); } #endif if (sc->sc_base.me_evp != NULL) return (EBUSY); evar = &sc->sc_base.me_evar; if (wsevent_init(evar)) return (EBUSY); error = wsmousedoopen(sc, evar); if (error) wsevent_fini(evar); return (error); } int wsmouseclose(dev_t dev, int flags, int mode, struct proc *p) { struct wsmouse_softc *sc = (struct wsmouse_softc *)wsmouse_cd.cd_devs[minor(dev)]; struct wseventvar *evar = sc->sc_base.me_evp; if ((flags & (FREAD | FWRITE)) == FWRITE) /* Not open for read */ return (0); sc->sc_base.me_evp = NULL; (*sc->sc_accessops->disable)(sc->sc_accesscookie); wsevent_fini(evar); #if NWSMUX > 0 if (sc->sc_base.me_parent == NULL) { int mux, error; DPRINTF(("%s: attach\n", __func__)); mux = sc->sc_base.me_dv.dv_cfdata->wsmousedevcf_mux; if (mux >= 0) { error = wsmux_attach_sc(wsmux_getmux(mux), &sc->sc_base); if (error) printf("%s: can't attach mux (error=%d)\n", sc->sc_base.me_dv.dv_xname, error); } } #endif return (0); } int wsmousedoopen(struct wsmouse_softc *sc, struct wseventvar *evp) { int error; /* The device could already be attached to a mux. */ if (sc->sc_base.me_evp != NULL) return (EBUSY); sc->sc_base.me_evp = evp; wsmouse_input_reset(&sc->sc_input); /* enable the device, and punt if that's not possible */ error = (*sc->sc_accessops->enable)(sc->sc_accesscookie); if (error) sc->sc_base.me_evp = NULL; return (error); } int wsmouseread(dev_t dev, struct uio *uio, int flags) { struct wsmouse_softc *sc = wsmouse_cd.cd_devs[minor(dev)]; int error; if (sc->sc_dying) return (EIO); #ifdef DIAGNOSTIC if (sc->sc_base.me_evp == NULL) { printf("wsmouseread: evp == NULL\n"); return (EINVAL); } #endif sc->sc_refcnt++; error = wsevent_read(sc->sc_base.me_evp, uio, flags); if (--sc->sc_refcnt < 0) { wakeup(sc); error = EIO; } return (error); } int wsmouseioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { return (wsmousedoioctl(wsmouse_cd.cd_devs[minor(dev)], cmd, data, flag, p)); } /* A wrapper around the ioctl() workhorse to make reference counting easy. */ int wsmousedoioctl(struct device *dv, u_long cmd, caddr_t data, int flag, struct proc *p) { struct wsmouse_softc *sc = (struct wsmouse_softc *)dv; int error; sc->sc_refcnt++; error = wsmouse_do_ioctl(sc, cmd, data, flag, p); if (--sc->sc_refcnt < 0) wakeup(sc); return (error); } int wsmouse_param_ioctl(struct wsmouse_softc *sc, u_long cmd, struct wsmouse_param *params, u_int nparams) { struct wsmouse_param *buf; int error, s, size; if (params == NULL || nparams > WSMOUSECFG_MAX) return (EINVAL); size = nparams * sizeof(struct wsmouse_param); buf = malloc(size, M_DEVBUF, M_WAITOK); if (buf == NULL) return (ENOMEM); if ((error = copyin(params, buf, size))) { free(buf, M_DEVBUF, size); return (error); } s = spltty(); if (cmd == WSMOUSEIO_SETPARAMS) { if (wsmouse_set_params((struct device *) sc, buf, nparams)) error = EINVAL; } else { if (wsmouse_get_params((struct device *) sc, buf, nparams)) error = EINVAL; else error = copyout(buf, params, size); } splx(s); free(buf, M_DEVBUF, size); return (error); } int wsmouse_do_ioctl(struct wsmouse_softc *sc, u_long cmd, caddr_t data, int flag, struct proc *p) { struct wseventvar *evar; int error; if (sc->sc_dying) return (EIO); /* * Try the generic ioctls that the wsmouse interface supports. */ switch (cmd) { case FIOASYNC: case FIOSETOWN: case TIOCSPGRP: if ((flag & FWRITE) == 0) return (EACCES); } switch (cmd) { case FIONBIO: /* we will remove this someday (soon???) */ return (0); case FIOASYNC: if (sc->sc_base.me_evp == NULL) return (EINVAL); sc->sc_base.me_evp->ws_async = *(int *)data != 0; return (0); case FIOGETOWN: case TIOCGPGRP: evar = sc->sc_base.me_evp; if (evar == NULL) return (EINVAL); sigio_getown(&evar->ws_sigio, cmd, data); return (0); case FIOSETOWN: case TIOCSPGRP: evar = sc->sc_base.me_evp; if (evar == NULL) return (EINVAL); return (sigio_setown(&evar->ws_sigio, cmd, data)); case WSMOUSEIO_GETPARAMS: case WSMOUSEIO_SETPARAMS: return (wsmouse_param_ioctl(sc, cmd, ((struct wsmouse_parameters *) data)->params, ((struct wsmouse_parameters *) data)->nparams)); } /* * Try the mouse driver for WSMOUSEIO ioctls. It returns -1 * if it didn't recognize the request. */ error = (*sc->sc_accessops->ioctl)(sc->sc_accesscookie, cmd, data, flag, p); return (error != -1 ? error : ENOTTY); } int wsmousekqfilter(dev_t dev, struct knote *kn) { struct wsmouse_softc *sc = wsmouse_cd.cd_devs[minor(dev)]; if (sc->sc_base.me_evp == NULL) return (ENXIO); return (wsevent_kqfilter(sc->sc_base.me_evp, kn)); } #if NWSMUX > 0 int wsmouse_mux_open(struct wsevsrc *me, struct wseventvar *evp) { struct wsmouse_softc *sc = (struct wsmouse_softc *)me; return (wsmousedoopen(sc, evp)); } int wsmouse_mux_close(struct wsevsrc *me) { struct wsmouse_softc *sc = (struct wsmouse_softc *)me; (*sc->sc_accessops->disable)(sc->sc_accesscookie); sc->sc_base.me_evp = NULL; return (0); } int wsmouse_add_mux(int unit, struct wsmux_softc *muxsc) { struct wsmouse_softc *sc; if (unit < 0 || unit >= wsmouse_cd.cd_ndevs || (sc = wsmouse_cd.cd_devs[unit]) == NULL) return (ENXIO); if (sc->sc_base.me_parent != NULL || sc->sc_base.me_evp != NULL) return (EBUSY); return (wsmux_attach_sc(muxsc, &sc->sc_base)); } #endif /* NWSMUX > 0 */ void wsmouse_buttons(struct device *sc, u_int buttons) { struct btn_state *btn = &((struct wsmouse_softc *) sc)->sc_input.btn; if (btn->sync) /* Restore the old state. */ btn->buttons ^= btn->sync; btn->sync = btn->buttons ^ buttons; btn->buttons = buttons; } void wsmouse_motion(struct device *sc, int dx, int dy, int dz, int dw) { struct motion_state *motion = &((struct wsmouse_softc *) sc)->sc_input.motion; motion->dx = dx; motion->dy = dy; motion->dz = dz; motion->dw = dw; if (dx || dy || dz || dw) motion->sync |= SYNC_DELTAS; } static inline void set_x(struct position *pos, int x, u_int *sync, u_int mask) { if (*sync & mask) { if (x == pos->x) return; pos->x -= pos->dx; pos->acc_dx -= pos->dx; } if ((pos->dx = x - pos->x)) { pos->x = x; if ((pos->dx > 0) == (pos->acc_dx > 0)) pos->acc_dx += pos->dx; else pos->acc_dx = pos->dx; *sync |= mask; } } static inline void set_y(struct position *pos, int y, u_int *sync, u_int mask) { if (*sync & mask) { if (y == pos->y) return; pos->y -= pos->dy; pos->acc_dy -= pos->dy; } if ((pos->dy = y - pos->y)) { pos->y = y; if ((pos->dy > 0) == (pos->acc_dy > 0)) pos->acc_dy += pos->dy; else pos->acc_dy = pos->dy; *sync |= mask; } } static inline void cleardeltas(struct position *pos) { pos->dx = pos->acc_dx = 0; pos->dy = pos->acc_dy = 0; } void wsmouse_position(struct device *sc, int x, int y) { struct motion_state *motion = &((struct wsmouse_softc *) sc)->sc_input.motion; set_x(&motion->pos, x, &motion->sync, SYNC_X); set_y(&motion->pos, y, &motion->sync, SYNC_Y); } static inline int normalized_pressure(struct wsmouseinput *input, int pressure) { int limit = imax(input->touch.min_pressure, 1); if (pressure >= limit) return pressure; else return (pressure < 0 ? limit : 0); } void wsmouse_touch(struct device *sc, int pressure, int contacts) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct touch_state *touch = &input->touch; pressure = normalized_pressure(input, pressure); contacts = (pressure ? imax(contacts, 1) : 0); if (pressure == 0 || pressure != touch->pressure) { /* * pressure == 0: Drivers may report possibly arbitrary * coordinates in this case; touch_update will correct them. */ touch->pressure = pressure; touch->sync |= SYNC_PRESSURE; } if (contacts != touch->contacts) { touch->contacts = contacts; touch->sync |= SYNC_CONTACTS; } } void wsmouse_mtstate(struct device *sc, int slot, int x, int y, int pressure) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct mt_state *mt = &input->mt; struct mt_slot *mts; u_int bit; if (slot < 0 || slot >= mt->num_slots) return; bit = (1 << slot); mt->frame |= bit; mts = &mt->slots[slot]; set_x(&mts->pos, x, mt->sync + MTS_X, bit); set_y(&mts->pos, y, mt->sync + MTS_Y, bit); /* Is this a new touch? */ if ((mt->touches & bit) == (mt->sync[MTS_TOUCH] & bit)) cleardeltas(&mts->pos); pressure = normalized_pressure(input, pressure); if (pressure != mts->pressure) { mts->pressure = pressure; mt->sync[MTS_PRESSURE] |= bit; if (pressure) { if ((mt->touches & bit) == 0) { mt->num_touches++; mt->touches |= bit; mt->sync[MTS_TOUCH] |= bit; mt->sync[MTS_X] |= bit; mt->sync[MTS_Y] |= bit; } } else if (mt->touches & bit) { mt->num_touches--; mt->touches ^= bit; mt->sync[MTS_TOUCH] |= bit; mt->ptr_mask &= mt->touches; } } } void wsmouse_set(struct device *sc, enum wsmouseval type, int value, int aux) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct mt_slot *mts; if (WSMOUSE_IS_MT_CODE(type)) { if (aux < 0 || aux >= input->mt.num_slots) return; mts = &input->mt.slots[aux]; } switch (type) { case WSMOUSE_REL_X: value += input->motion.pos.x; /* fall through */ case WSMOUSE_ABS_X: wsmouse_position(sc, value, input->motion.pos.y); return; case WSMOUSE_REL_Y: value += input->motion.pos.y; /* fall through */ case WSMOUSE_ABS_Y: wsmouse_position(sc, input->motion.pos.x, value); return; case WSMOUSE_PRESSURE: wsmouse_touch(sc, value, input->touch.contacts); return; case WSMOUSE_CONTACTS: /* Contact counts can be overridden by wsmouse_touch. */ if (value != input->touch.contacts) { input->touch.contacts = value; input->touch.sync |= SYNC_CONTACTS; } return; case WSMOUSE_TOUCH_WIDTH: if (value != input->touch.width) { input->touch.width = value; input->touch.sync |= SYNC_TOUCH_WIDTH; } return; case WSMOUSE_MT_REL_X: value += mts->pos.x; /* fall through */ case WSMOUSE_MT_ABS_X: wsmouse_mtstate(sc, aux, value, mts->pos.y, mts->pressure); return; case WSMOUSE_MT_REL_Y: value += mts->pos.y; /* fall through */ case WSMOUSE_MT_ABS_Y: wsmouse_mtstate(sc, aux, mts->pos.x, value, mts->pressure); return; case WSMOUSE_MT_PRESSURE: wsmouse_mtstate(sc, aux, mts->pos.x, mts->pos.y, value); return; } } /* Make touch and motion state consistent. */ void wsmouse_touch_update(struct wsmouseinput *input) { struct motion_state *motion = &input->motion; struct touch_state *touch = &input->touch; if (touch->pressure == 0) { /* * There may be zero coordinates, or coordinates of * touches with pressure values below min_pressure. */ if (motion->sync & SYNC_POSITION) { /* Restore valid coordinates. */ motion->pos.x -= motion->pos.dx; motion->pos.y -= motion->pos.dy; motion->sync &= ~SYNC_POSITION; } if (touch->prev_contacts == 0) touch->sync &= ~SYNC_PRESSURE; } if (touch->sync & SYNC_CONTACTS) /* Suppress pointer movement. */ cleardeltas(&motion->pos); if ((touch->sync & SYNC_PRESSURE) && touch->min_pressure) { if (touch->pressure >= input->filter.pressure_hi) touch->min_pressure = input->filter.pressure_lo; else if (touch->pressure < input->filter.pressure_lo) touch->min_pressure = input->filter.pressure_hi; } } /* Normalize multitouch state. */ void wsmouse_mt_update(struct wsmouseinput *input) { int i; /* * The same as above: There may be arbitrary coordinates if * (pressure == 0). Clear the sync flags for touches that have * been released. */ if (input->mt.frame & ~input->mt.touches) { for (i = MTS_X; i < MTS_SIZE; i++) input->mt.sync[i] &= input->mt.touches; } } /* Return TRUE if a coordinate update may be noise. */ int wsmouse_hysteresis(struct wsmouseinput *input, struct position *pos) { return (abs(pos->acc_dx) < input->filter.h.hysteresis && abs(pos->acc_dy) < input->filter.v.hysteresis); } /* * Select the pointer-controlling MT slot. * * Pointer-control is assigned to slots with non-zero motion deltas if * at least one such slot exists. This function doesn't impose any * restrictions on the way drivers use wsmouse_mtstate(), it covers * partial, unordered, and "delta-filtered" input. * * The "cycle" is the set of slots with X/Y updates in previous sync * operations; it will be cleared and rebuilt whenever a slot that is * being updated is already a member. If a cycle ends that doesn't * contain the pointer-controlling slot, a new slot will be selected. */ void wsmouse_ptr_ctrl(struct wsmouseinput *input) { struct mt_state *mt = &input->mt; u_int updates; int select, slot; mt->prev_ptr = mt->ptr; if (mt->num_touches <= 1) { mt->ptr = mt->touches; mt->ptr_cycle = mt->ptr; return; } updates = (mt->sync[MTS_X] | mt->sync[MTS_Y]) & ~mt->sync[MTS_TOUCH]; FOREACHBIT(updates, slot) { /* * Touches that just produce noise are no problem if the * frequency of zero deltas is high enough, but there might * be no guarantee for that. */ if (wsmouse_hysteresis(input, &mt->slots[slot].pos)) updates ^= (1 << slot); } /* * If there is no pointer-controlling slot, or if it should be * masked, select a new one. */ select = ((mt->ptr & mt->touches & ~mt->ptr_mask) == 0); /* Remove slots without coordinate deltas from the cycle. */ mt->ptr_cycle &= ~(mt->frame ^ updates); if (mt->ptr_cycle & updates) { select |= ((mt->ptr_cycle & mt->ptr) == 0); mt->ptr_cycle = updates; } else { mt->ptr_cycle |= updates; } if (select) { if (mt->ptr_cycle & ~mt->ptr_mask) slot = ffs(mt->ptr_cycle & ~mt->ptr_mask) - 1; else if (mt->touches & ~mt->ptr_mask) slot = ffs(mt->touches & ~mt->ptr_mask) - 1; else slot = ffs(mt->touches) - 1; mt->ptr = (1 << slot); } } /* Derive touch and motion state from MT state. */ void wsmouse_mt_convert(struct device *sc) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct mt_state *mt = &input->mt; struct mt_slot *mts; int slot, pressure; wsmouse_ptr_ctrl(input); if (mt->ptr) { slot = ffs(mt->ptr) - 1; mts = &mt->slots[slot]; if (mts->pos.x != input->motion.pos.x) input->motion.sync |= SYNC_X; if (mts->pos.y != input->motion.pos.y) input->motion.sync |= SYNC_Y; if (mt->ptr != mt->prev_ptr) /* Suppress pointer movement. */ mts->pos.dx = mts->pos.dy = 0; memcpy(&input->motion.pos, &mts->pos, sizeof(struct position)); pressure = mts->pressure; } else { pressure = 0; } wsmouse_touch(sc, pressure, mt->num_touches); } void wsmouse_evq_put(struct evq_access *evq, int ev_type, int ev_value) { struct wscons_event *ev; int space; space = evq->evar->ws_get - evq->put; if (space != 1 && space != 1 - WSEVENT_QSIZE) { ev = &evq->evar->ws_q[evq->put++]; evq->put %= WSEVENT_QSIZE; ev->type = ev_type; ev->value = ev_value; memcpy(&ev->time, &evq->ts, sizeof(struct timespec)); evq->result |= EVQ_RESULT_SUCCESS; } else { evq->result = EVQ_RESULT_OVERFLOW; } } void wsmouse_btn_sync(struct btn_state *btn, struct evq_access *evq) { int button, ev_type; u_int bit, sync; for (sync = btn->sync; sync; sync ^= bit) { button = ffs(sync) - 1; bit = (1 << button); ev_type = (btn->buttons & bit) ? BTN_DOWN_EV : BTN_UP_EV; wsmouse_evq_put(evq, ev_type, button); } } /* * Scale with a [*.12] fixed-point factor and a remainder: */ static inline int scale(int val, int factor, int *rmdr) { val = val * factor + *rmdr; if (val >= 0) { *rmdr = val & 0xfff; return (val >> 12); } else { *rmdr = -(-val & 0xfff); return -(-val >> 12); } } void wsmouse_motion_sync(struct wsmouseinput *input, struct evq_access *evq) { struct motion_state *motion = &input->motion; struct axis_filter *h = &input->filter.h; struct axis_filter *v = &input->filter.v; int x, y, dx, dy, dz, dw; if (motion->sync & SYNC_DELTAS) { dx = h->inv ? -motion->dx : motion->dx; dy = v->inv ? -motion->dy : motion->dy; if (h->scale) dx = scale(dx, h->scale, &h->rmdr); if (v->scale) dy = scale(dy, v->scale, &v->rmdr); if (dx) wsmouse_evq_put(evq, DELTA_X_EV(input), dx); if (dy) wsmouse_evq_put(evq, DELTA_Y_EV(input), dy); if (motion->dz) { dz = (input->flags & REVERSE_SCROLLING) ? -motion->dz : motion->dz; if (IS_TOUCHPAD(input)) wsmouse_evq_put(evq, VSCROLL_EV, dz); else wsmouse_evq_put(evq, DELTA_Z_EV, dz); } if (motion->dw) { dw = (input->flags & REVERSE_SCROLLING) ? -motion->dw : motion->dw; if (IS_TOUCHPAD(input)) wsmouse_evq_put(evq, HSCROLL_EV, dw); else wsmouse_evq_put(evq, DELTA_W_EV, dw); } } if (motion->sync & SYNC_POSITION) { if (motion->sync & SYNC_X) { x = (h->inv ? h->inv - motion->pos.x : motion->pos.x); wsmouse_evq_put(evq, ABS_X_EV(input), x); } if (motion->sync & SYNC_Y) { y = (v->inv ? v->inv - motion->pos.y : motion->pos.y); wsmouse_evq_put(evq, ABS_Y_EV(input), y); } if (motion->pos.dx == 0 && motion->pos.dy == 0 && (input->flags & TPAD_NATIVE_MODE )) /* Suppress pointer motion. */ wsmouse_evq_put(evq, WSCONS_EVENT_TOUCH_RESET, 0); } } void wsmouse_touch_sync(struct wsmouseinput *input, struct evq_access *evq) { struct touch_state *touch = &input->touch; if (touch->sync & SYNC_PRESSURE) wsmouse_evq_put(evq, ABS_Z_EV, touch->pressure); if (touch->sync & SYNC_CONTACTS) wsmouse_evq_put(evq, ABS_W_EV, touch->contacts); if ((touch->sync & SYNC_TOUCH_WIDTH) && (input->flags & TPAD_NATIVE_MODE)) wsmouse_evq_put(evq, WSCONS_EVENT_TOUCH_WIDTH, touch->width); } void wsmouse_log_input(struct wsmouseinput *input, struct timespec *ts) { struct motion_state *motion = &input->motion; int t_sync, mt_sync; t_sync = (input->touch.sync & SYNC_CONTACTS); mt_sync = (input->mt.frame && (input->mt.sync[MTS_TOUCH] || input->mt.ptr != input->mt.prev_ptr)); if (motion->sync || mt_sync || t_sync || input->btn.sync) printf("[%s-in][%04d]", DEVNAME(input), LOGTIME(ts)); else return; if (motion->sync & SYNC_POSITION) printf(" abs:%d,%d", motion->pos.x, motion->pos.y); if (motion->sync & SYNC_DELTAS) printf(" rel:%d,%d,%d,%d", motion->dx, motion->dy, motion->dz, motion->dw); if (mt_sync) printf(" mt:0x%02x:%d", input->mt.touches, ffs(input->mt.ptr) - 1); else if (t_sync) printf(" t:%d", input->touch.contacts); if (input->btn.sync) printf(" btn:0x%02x", input->btn.buttons); printf("\n"); } void wsmouse_log_events(struct wsmouseinput *input, struct evq_access *evq) { struct wscons_event *ev; int n = evq->evar->ws_put; if (n != evq->put) { printf("[%s-ev][%04d]", DEVNAME(input), LOGTIME(&evq->ts)); while (n != evq->put) { ev = &evq->evar->ws_q[n++]; n %= WSEVENT_QSIZE; printf(" %d:%d", ev->type, ev->value); } printf("\n"); } } static inline void clear_sync_flags(struct wsmouseinput *input) { int i; input->btn.sync = 0; input->sbtn.sync = 0; input->motion.sync = 0; input->touch.sync = 0; input->touch.prev_contacts = input->touch.contacts; if (input->mt.frame) { input->mt.frame = 0; for (i = 0; i < MTS_SIZE; i++) input->mt.sync[i] = 0; } } void wsmouse_input_sync(struct device *sc) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct evq_access evq; evq.evar = *input->evar; if (evq.evar == NULL) return; evq.put = evq.evar->ws_put; evq.result = EVQ_RESULT_NONE; getnanotime(&evq.ts); enqueue_randomness(input->btn.buttons ^ input->motion.dx ^ input->motion.dy ^ input->motion.pos.x ^ input->motion.pos.y ^ input->motion.dz ^ input->motion.dw); if (input->mt.frame) { wsmouse_mt_update(input); wsmouse_mt_convert(sc); } if (input->touch.sync) wsmouse_touch_update(input); if (input->flags & LOG_INPUT) wsmouse_log_input(input, &evq.ts); if (input->flags & TPAD_COMPAT_MODE) wstpad_compat_convert(input, &evq); if (input->flags & RESYNC) { input->flags &= ~RESYNC; input->motion.sync &= SYNC_POSITION; } if (input->btn.sync) wsmouse_btn_sync(&input->btn, &evq); if (input->sbtn.sync) wsmouse_btn_sync(&input->sbtn, &evq); if (input->motion.sync) wsmouse_motion_sync(input, &evq); if (input->touch.sync) wsmouse_touch_sync(input, &evq); /* No MT events are generated yet. */ if (evq.result == EVQ_RESULT_SUCCESS) { wsmouse_evq_put(&evq, WSCONS_EVENT_SYNC, 0); if (evq.result == EVQ_RESULT_SUCCESS) { if (input->flags & LOG_EVENTS) { wsmouse_log_events(input, &evq); } evq.evar->ws_put = evq.put; WSEVENT_WAKEUP(evq.evar); } } if (evq.result != EVQ_RESULT_OVERFLOW) clear_sync_flags(input); else input->flags |= RESYNC; } int wsmouse_id_to_slot(struct device *sc, int id) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct mt_state *mt = &input->mt; int slot; if (mt->num_slots == 0) return (-1); FOREACHBIT(mt->touches, slot) { if (mt->slots[slot].id == id) return slot; } slot = ffs(~(mt->touches | mt->frame)) - 1; if (slot >= 0 && slot < mt->num_slots) { mt->frame |= 1 << slot; mt->slots[slot].id = id; return (slot); } else { return (-1); } } /* * Find a minimum-weight matching for an m-by-n matrix. * * m must be greater than or equal to n. The size of the buffer must be * at least 3m + 3n. * * On return, the first m elements of the buffer contain the row-to- * column mappings, i.e., buffer[i] is the column index for row i, or -1 * if there is no assignment for that row (which may happen if n < m). * * Wrong results because of overflows will not occur with input values * in the range of 0 to INT_MAX / 2 inclusive. * * The function applies the Dinic-Kronrod algorithm. It is not modern or * popular, but it seems to be a good choice for small matrices at least. * The original form of the algorithm is modified as follows: There is no * initial search for row minima, the initial assignments are in a * "virtual" column with the index -1 and zero values. This permits inputs * with n < m, and it simplifies the reassignments. */ void wsmouse_matching(int *matrix, int m, int n, int *buffer) { int i, j, k, d, e, row, col, delta; int *p; int *r2c = buffer; /* row-to-column assignments */ int *red = r2c + m; /* reduced values of the assignments */ int *mc = red + m; /* row-wise minimal elements of cs */ int *cs = mc + m; /* the column set */ int *c2r = cs + n; /* column-to-row assignments in cs */ int *cd = c2r + n; /* column deltas (reduction) */ for (p = r2c; p < red; *p++ = -1) {} for (; p < mc; *p++ = 0) {} for (col = 0; col < n; col++) { delta = INT_MAX; row = 0; for (i = 0, p = matrix + col; i < m; i++, p += n) { d = *p - red[i]; if (d < delta || (d == delta && r2c[i] < 0)) { delta = d; row = i; } } cd[col] = delta; if (r2c[row] < 0) { r2c[row] = col; continue; } for (p = mc; p < cs; *p++ = col) {} for (k = 0; (j = r2c[row]) >= 0;) { cs[k++] = j; c2r[j] = row; mc[row] -= n; delta = INT_MAX; for (i = 0, p = matrix; i < m; i++, p += n) if (mc[i] >= 0) { d = p[mc[i]] - cd[mc[i]]; e = p[j] - cd[j]; if (e < d) { d = e; mc[i] = j; } d -= red[i]; if (d < delta || (d == delta && r2c[i] < 0)) { delta = d; row = i; } } cd[col] += delta; for (i = 0; i < k; i++) { cd[cs[i]] += delta; red[c2r[cs[i]]] -= delta; } } for (j = mc[row]; (r2c[row] = j) != col;) { row = c2r[j]; j = mc[row] + n; } } } /* * Assign slot numbers to the points in the pt array, and update all slots by * calling wsmouse_mtstate internally. The slot numbers are passed to the * caller in the pt->slot fields. * * The slot assignment pairs the points with points of the previous frame in * such a way that the sum of the squared distances is minimal. Using * squares instead of simple distances favours assignments with more uniform * distances, and it is faster. */ void wsmouse_mtframe(struct device *sc, struct mtpoint *pt, int size) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; struct mt_state *mt = &input->mt; int i, j, m, n, dx, dy, slot, maxdist; int *p, *r2c, *c2r; u_int touches; if (mt->num_slots == 0 || mt->matrix == NULL) return; size = imax(0, imin(size, mt->num_slots)); p = mt->matrix; touches = mt->touches; if (mt->num_touches >= size) { FOREACHBIT(touches, slot) for (i = 0; i < size; i++) { dx = pt[i].x - mt->slots[slot].pos.x; dy = pt[i].y - mt->slots[slot].pos.y; *p++ = dx * dx + dy * dy; } m = mt->num_touches; n = size; } else { for (i = 0; i < size; i++) FOREACHBIT(touches, slot) { dx = pt[i].x - mt->slots[slot].pos.x; dy = pt[i].y - mt->slots[slot].pos.y; *p++ = dx * dx + dy * dy; } m = size; n = mt->num_touches; } wsmouse_matching(mt->matrix, m, n, p); r2c = p; c2r = p + m; maxdist = input->filter.tracking_maxdist; maxdist = (maxdist ? maxdist * maxdist : INT_MAX); for (i = 0, p = mt->matrix; i < m; i++, p += n) if ((j = r2c[i]) >= 0) { if (p[j] <= maxdist) c2r[j] = i; else c2r[j] = r2c[i] = -1; } p = (n == size ? c2r : r2c); for (i = 0; i < size; i++) if (*p++ < 0) { slot = ffs(~(mt->touches | mt->frame)) - 1; if (slot < 0 || slot >= mt->num_slots) break; wsmouse_mtstate(sc, slot, pt[i].x, pt[i].y, pt[i].pressure); pt[i].slot = slot; } p = (n == size ? r2c : c2r); FOREACHBIT(touches, slot) if ((i = *p++) >= 0) { wsmouse_mtstate(sc, slot, pt[i].x, pt[i].y, pt[i].pressure); pt[i].slot = slot; } else { wsmouse_mtstate(sc, slot, 0, 0, 0); } } static inline void free_mt_slots(struct wsmouseinput *input) { int n, size; if ((n = input->mt.num_slots)) { size = n * sizeof(struct mt_slot); if (input->flags & MT_TRACKING) size += MATRIX_SIZE(n); input->mt.num_slots = 0; free(input->mt.slots, M_DEVBUF, size); input->mt.slots = NULL; input->mt.matrix = NULL; } } /* Allocate the MT slots and, if necessary, the buffers for MT tracking. */ int wsmouse_mt_init(struct device *sc, int num_slots, int tracking) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; int n, size; if (num_slots == input->mt.num_slots && (!tracking == ((input->flags & MT_TRACKING) == 0))) return (0); free_mt_slots(input); if (tracking) input->flags |= MT_TRACKING; else input->flags &= ~MT_TRACKING; n = imin(imax(num_slots, 0), WSMOUSE_MT_SLOTS_MAX); if (n) { size = n * sizeof(struct mt_slot); if (input->flags & MT_TRACKING) size += MATRIX_SIZE(n); input->mt.slots = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO); if (input->mt.slots != NULL) { if (input->flags & MT_TRACKING) input->mt.matrix = (int *) (input->mt.slots + n); input->mt.num_slots = n; return (0); } } return (-1); } int wsmouse_get_params(struct device *sc, struct wsmouse_param *params, u_int nparams) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; int i, key, error = 0; for (i = 0; i < nparams; i++) { key = params[i].key; switch (key) { case WSMOUSECFG_DX_SCALE: params[i].value = input->filter.h.scale; break; case WSMOUSECFG_DY_SCALE: params[i].value = input->filter.v.scale; break; case WSMOUSECFG_PRESSURE_LO: params[i].value = input->filter.pressure_lo; break; case WSMOUSECFG_PRESSURE_HI: params[i].value = input->filter.pressure_hi; break; case WSMOUSECFG_TRKMAXDIST: params[i].value = input->filter.tracking_maxdist; break; case WSMOUSECFG_SWAPXY: params[i].value = input->filter.swapxy; break; case WSMOUSECFG_X_INV: params[i].value = input->filter.h.inv; break; case WSMOUSECFG_Y_INV: params[i].value = input->filter.v.inv; break; case WSMOUSECFG_REVERSE_SCROLLING: params[i].value = !!(input->flags & REVERSE_SCROLLING); break; case WSMOUSECFG_DX_MAX: params[i].value = input->filter.h.dmax; break; case WSMOUSECFG_DY_MAX: params[i].value = input->filter.v.dmax; break; case WSMOUSECFG_X_HYSTERESIS: params[i].value = input->filter.h.hysteresis; break; case WSMOUSECFG_Y_HYSTERESIS: params[i].value = input->filter.v.hysteresis; break; case WSMOUSECFG_DECELERATION: params[i].value = input->filter.dclr; break; case WSMOUSECFG_STRONG_HYSTERESIS: params[i].value = 0; /* The feature has been removed. */ break; case WSMOUSECFG_SMOOTHING: params[i].value = input->filter.mode & SMOOTHING_MASK; break; case WSMOUSECFG_LOG_INPUT: params[i].value = !!(input->flags & LOG_INPUT); break; case WSMOUSECFG_LOG_EVENTS: params[i].value = !!(input->flags & LOG_EVENTS); break; default: error = wstpad_get_param(input, key, ¶ms[i].value); if (error != 0) return (error); break; } } return (0); } int wsmouse_set_params(struct device *sc, const struct wsmouse_param *params, u_int nparams) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; int i, val, key, needreset = 0, error = 0; for (i = 0; i < nparams; i++) { key = params[i].key; val = params[i].value; switch (params[i].key) { case WSMOUSECFG_PRESSURE_LO: input->filter.pressure_lo = val; if (val > input->filter.pressure_hi) input->filter.pressure_hi = val; input->touch.min_pressure = input->filter.pressure_hi; break; case WSMOUSECFG_PRESSURE_HI: input->filter.pressure_hi = val; if (val < input->filter.pressure_lo) input->filter.pressure_lo = val; input->touch.min_pressure = val; break; case WSMOUSECFG_X_HYSTERESIS: input->filter.h.hysteresis = val; break; case WSMOUSECFG_Y_HYSTERESIS: input->filter.v.hysteresis = val; break; case WSMOUSECFG_DECELERATION: input->filter.dclr = val; wstpad_init_deceleration(input); break; case WSMOUSECFG_DX_SCALE: input->filter.h.scale = val; break; case WSMOUSECFG_DY_SCALE: input->filter.v.scale = val; break; case WSMOUSECFG_TRKMAXDIST: input->filter.tracking_maxdist = val; break; case WSMOUSECFG_SWAPXY: input->filter.swapxy = val; break; case WSMOUSECFG_X_INV: input->filter.h.inv = val; break; case WSMOUSECFG_Y_INV: input->filter.v.inv = val; break; case WSMOUSECFG_REVERSE_SCROLLING: if (val) input->flags |= REVERSE_SCROLLING; else input->flags &= ~REVERSE_SCROLLING; break; case WSMOUSECFG_DX_MAX: input->filter.h.dmax = val; break; case WSMOUSECFG_DY_MAX: input->filter.v.dmax = val; break; case WSMOUSECFG_SMOOTHING: input->filter.mode &= ~SMOOTHING_MASK; input->filter.mode |= (val & SMOOTHING_MASK); break; case WSMOUSECFG_LOG_INPUT: if (val) input->flags |= LOG_INPUT; else input->flags &= ~LOG_INPUT; break; case WSMOUSECFG_LOG_EVENTS: if (val) input->flags |= LOG_EVENTS; else input->flags &= ~LOG_EVENTS; break; default: needreset = 1; error = wstpad_set_param(input, key, val); if (error != 0) return (error); break; } } /* Reset soft-states if touchpad parameters changed */ if (needreset) { wstpad_reset(input); return (wstpad_configure(input)); } return (0); } int wsmouse_set_mode(struct device *sc, int mode) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; if (mode == WSMOUSE_COMPAT) { input->flags &= ~TPAD_NATIVE_MODE; input->flags |= TPAD_COMPAT_MODE; return (0); } else if (mode == WSMOUSE_NATIVE) { input->flags &= ~TPAD_COMPAT_MODE; input->flags |= TPAD_NATIVE_MODE; return (0); } return (-1); } struct wsmousehw *wsmouse_get_hw(struct device *sc) { return &((struct wsmouse_softc *) sc)->sc_input.hw; } /* * Create a default configuration based on the hardware infos in the 'hw' * fields. The 'params' argument is optional, hardware drivers can use it * to modify the generic defaults. Up to now this function is only useful * for touchpads. */ int wsmouse_configure(struct device *sc, struct wsmouse_param *params, u_int nparams) { struct wsmouseinput *input = &((struct wsmouse_softc *) sc)->sc_input; int error; if (!(input->flags & CONFIGURED)) { if (input->hw.x_max && input->hw.y_max) { if (input->hw.flags & WSMOUSEHW_LR_DOWN) { input->filter.v.inv = input->hw.y_max + input->hw.y_min; } } input->filter.ratio = 1 << 12; if (input->hw.h_res > 0 && input->hw.v_res > 0) { input->filter.ratio *= input->hw.h_res; input->filter.ratio /= input->hw.v_res; } if (wsmouse_mt_init(sc, input->hw.mt_slots, (input->hw.flags & WSMOUSEHW_MT_TRACKING))) { printf("wsmouse_configure: " "MT initialization failed.\n"); return (-1); } if (IS_TOUCHPAD(input) && wstpad_configure(input)) { printf("wstpad_configure: " "Initialization failed.\n"); return (-1); } input->flags |= CONFIGURED; if (params != NULL) { if ((error = wsmouse_set_params(sc, params, nparams))) return (error); } } if (IS_TOUCHPAD(input)) wsmouse_set_mode(sc, WSMOUSE_COMPAT); return (0); } void wsmouse_input_reset(struct wsmouseinput *input) { int num_slots, *matrix; struct mt_slot *slots; memset(&input->btn, 0, sizeof(struct btn_state)); memset(&input->motion, 0, sizeof(struct motion_state)); memset(&input->touch, 0, sizeof(struct touch_state)); input->touch.min_pressure = input->filter.pressure_hi; if ((num_slots = input->mt.num_slots)) { slots = input->mt.slots; matrix = input->mt.matrix; memset(&input->mt, 0, sizeof(struct mt_state)); memset(slots, 0, num_slots * sizeof(struct mt_slot)); input->mt.num_slots = num_slots; input->mt.slots = slots; input->mt.matrix = matrix; } if (input->tp != NULL) wstpad_reset(input); } void wsmouse_input_cleanup(struct wsmouseinput *input) { if (input->tp != NULL) wstpad_cleanup(input); free_mt_slots(input); }